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ABSTRACT
To exploit rich information from unlabeled data, in this work, we
propose a novel self-supervised framework for visual tracking
which can easily adapt the state-of-the-art supervised Siamese-
based trackers into unsupervised ones by utilizing the fact that
an image and any cropped region of it can form a natural pair
for self-training. Besides common geometric transformation-based
data augmentation and hard negative mining, we also propose ad-
versarial masking which helps the tracker to learn other context
information by adaptively blacking out salient regions of the tar-
get. The proposed approach can be trained offline using images
only without any requirement of manual annotations and tempo-
ral information from multiple consecutive frames. Thus, it can be
used with any kind of unlabeled data, including images and video
frames. For evaluation, we take SiamFC as the base tracker and
name the proposed self-supervised method as 𝑆2SiamFC. Extensive
experiments and ablation studies on the challenging VOT2016 and
VOT2018 datasets are provided to demonstrate the effectiveness
of the proposed method which not only achieves comparable per-
formance to its supervised counterpart and other unsupervised
methods requiring multiple frames.
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Figure 1: Illustration of the difference between (a) common
unsupervised learning approach and (b) the proposed self-
supervised learning approach. In (b), the regions are partly
overlapping and the positive samples are highlighted in red
and negative samples are highlighted in black.

1 INTRODUCTION
Visual tracking [4, 11, 17, 39, 63] is still one of the most active
and important research areas in computer vision, which aims to
predict the location of an arbitrary target in the consecutive frames
precisely by a given initial location (e,g., a bounding box annotation).
Although a variety of visual tracking models [6, 31, 56, 64] have
been developed, visual tracking is still an on-going and challenging
task due to large variations on occlusion, obscureness, fast motions
and deformation (i.e., some common challenges as shown in [51].),
which will significantly influence the tracking performance.

In recent years, benefiting from the rich features extracted by
deep convolutional neural networks [16, 23], the methods proposed
in [2, 8, 25, 26, 46, 54] have achieved state-of-the-art performance
in visual tracking, especially for the Siamese-network-based frame-
works [2, 15, 25, 26, 40, 45, 46]. However, most of these modern
trackers treat this task as a supervised learning problem and make
the assumption that large-scale annotated sequential datasets are
available. Recently, state-of-the-art methods [25, 46, 64] utilize sev-
eral datasets with millions of frame-by-frame annotated videos
and pretrained weights [25, 26, 45, 46, 60, 64] for building a ro-
bust tracker; this ignores the fact that collecting such large-scale
annotated datasets is extremely time-consuming and expensive.

On the contrary, the unlabeled images or videos in the wild are
innately available, and the distributions of these data are more
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general than the annotated ones. Moreover, to human beings, the
process of learning how to track should not rely on semantic objects
(i.e., even if the target is not a common semantic object, we can
still capture its unique features and track it). Therefore, we propose
a novel self-supervised framework for visual tracking which can
easily adapt the state-of-the-art supervised Siamese-based trackers
by utilizing the fact that an image and any cropped region of it can
form a natural pair for self-training. Unlike other deep unsuper-
vised learning methods, [43, 48] train the model by leveraging the
characteristics of temporal consistency across multiple frames for
the moving objects as shown in Fig. 1(a), the proposed method can
be used with any kind of unlabeled data, including images only,
video frames only as shown in Fig. 1(b). The advantage of using
only unlabeled images is that it is suitable for the scenario when
the amount of annotated training data is rare and difficult to collect.
The proposed method can reduce the cost of training and data col-
lection significantly compare with the video-based unsupervised
methods. Moreover, image-based self-supervised training makes on-
line model fine-tuning with one image become possible, which can
be used on fast domain adaptation in the form of semi-supervised
tracking.

In this paper, we adopt SiamFC [2] as our base tracker and call the
proposed self-supervised SiamFC as 𝑆2SiamFC. We propose several
training strategies that can unveil the power of unlabeled images
beyond unlabeled sequences commonly used by other unsupervised
methods. In general, the challenges of self-supervised tracking are
two-fold. First, in the training phase, when we randomly crop a
region from an image as our target template and then extend the
chosen region as our search image as a training pair (i.e., where
the target is still in the center, and this fact can be used as ground
truth for self-training.), it may lead to a potential issue which is
about “background content tracking” due to the randomness in
the process of sampling a training pair from the same image. The
training pairs could be all from the background which does not
carry any meaningful information. This will cause the performance
of a tracker to drop severely since the tracker cannot learn useful
information from such noisy training pairs. To address this issue,
we propose an Anti-clutter weighting (AC) which can adaptively
adjust the weight of each training sample by determining whether
the pair is informative or not. In this way, we can alleviate the
dominance of the noisy training pair in a self-supervised manner.
Second, the self-supervised tracking is challenging because only a
limited amount of appearance variations can be captured during
the training phase. To fully exploit rich information even from a
single image, we leverage the idea of adversarial learning to aug-
ment our training data during training. It helps the tracker to learn
other useful context information related to the target by adaptively
blacking out salient regions of the template image. Furthermore,
some common data augmentation skills and hard negative mining
for self-supervised learning are also adopted to improve the per-
formance against appearance variations. Therefore, the proposed
tracker can be trained by only using individual unlabeled images
instead of using sequential video frames.

To demonstrate the effectiveness of the proposed method, we
evaluate it on the challenging datasets, VOT2016 and VOT2018,
and it achieves competitive performance compared with the other
supervised learning-based approaches. At the same time, we also

provide ablation studies to illustrate the influence of each com-
ponent to the final tracking performance respectively. The main
contributions of this paper are summarized as follows:

• We propose an Anti-clutter weighting to adjust the weight
for each training sample according to the information from
the response map and suppress the effect of meaningless
training pair effectively.

• The proposed adversarial masking significantly helps the
model learn improved feature representation for tracking.

• To best of our knowledge, the proposed approach is the
first self-supervised object tracker which can be effectively
trained by only using images without any requirement of
using sequential frames and pretrained weights from super-
vised learning.

The rest of the paper is organized as follows. In Section 2, we briefly
review relevant works. The proposed approach will be described in
Section 3. Extensive experiments and ablation studies are provided
in Section 4. Finally, we conclude the paper in Section 5.

2 RELATEDWORK
In this section, we give a brief review of research topics related to
the proposed self-supervised visual tracking.

Siamese network-based trackers. Recently, the Siamese track-
ers [2, 15, 25, 26, 40, 45, 46] have demonstrated its effectiveness for
visual tracking because of its well-balanced accuracy and speed. As
one of the most representative trackers, SiamFC [2], Bertinetto et
al. proposes a classic architecture which aims at learning a simi-
larity function between the target object and search region in an
offline fashion. SiamRPN [26] and SiamFC++[53] advances this
framework by combining bounding box regression and using pre-
trained weights to initialize the backbone network, which achieves
excellent performance. DaSiamRPN [64] proposes a local-to-global
search strategy and introduces more hard negative pairs to learn
a distractor-aware feature. SiamRPN++ [25], SiamDW [60] and
UPDT [3] learn robust backbone feature by solving the padding
issues in deep and wide backbone network. GradNet [28] and
TADT [30] alleviate the negative effects of distractors by integrating
gradient information to update template feature during the infer-
ence stage. RASNet [45] proposes the forward attention mechanism
into the Siamese network-based tracker. CFNet [41] integrates the
correlation filter [4, 7, 9, 12, 18, 32, 57, 58] into the Siamese network-
based framework, and gets a comparable accuracy with real-time
frame rate. However, those state-of-the-art methods require large-
scale annotated video datasets for fully supervised training. In this
work, we propose a self-supervised approach to train a label-free
Siamese network-based trackers from scratch with images only.

Adversarial saliency-map-based data augmentation. The
saliency map is commonly used to provide the visual explanations
of a convolutional neural network (CNN). [5, 37, 61]. Zhou et al. [62]
proposes the Class Activation Mapping (CAM) for specific CNNs
which make use of the characteristics of the global average pooling
layer in these CNNs to produce the saliency map. [35] extends CAM
to Grad-CAM for any CNNs by doing backpropagation and get the
gradient information to produce the saliency map. ACoL [59] and
AE-PSL [50] produce the object localization map by directly select-
ing feature maps with adversarial erasing. WS-DAN[19] combines
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Figure 2: The training pipeline of the proposed method mainly consists of two stages: 1) The training pairs are sampled from
the same image and calculate the loss between the raw template and the search region first. 2) The values with the posi-
tive labels in response map are chosen to calculate the channel-wise saliency maps by backpropagation. One of the thresh-
olded saliency maps is chosen to mask the template image and feed the masked template into the network again for learning
appearance-robust features. “DW” denotes depth-wise convolution operation.

weakly supervised learning with data augmentation by using the
predicted attention map to crop and drop the particular area of the
image to train the model for improved performance. VITAL [36]
adopts the ideas of GAN [14] and uses a cost sensitive loss to solve
the class imbalance problem in visual tracking. A-Fast-RCNN [49]
proposes an adversarial network to generate some uncommon pos-
itive samples to make the model robust in object detection. In order
to make our model more accurate and robust, we integrate these
techniques [19, 27, 35, 59, 62] into our framework, combining self-
supervised manner with the adversarial learning [19, 27, 49, 59].
Although similar adversarial masking strategies have been explored
in other tasks [50], to the best of our knowledge, we are the first
to introduce it for improved appearance representation learning of
object tracking in the self-supervised setting.

Unsupervised learning. The proposed method is closely re-
lated to the unsupervised learning. [24] formulates the visual repre-
sentation as the sorting sequence task by considering the temporal
information. [42] proposes to anticipate the actions and objects by
using the high-level semantic feature on the temporal structure.
UDT [43] proposes a consistency loss by forward and backward
analysis. [48] proposes the temporal cycle-consistency by using the
semi-dense correspondence between each frame and [29] learns the
visual correspondence by conducting region-level and fine-grained
matching jointly. [52] proposes to generate various ranked sets
of object proposals in unlabeled videos to track the target. [20]
proposes the algorithm for the motion saliency estimation and
neighborhood graph architecture for object segmentation. [47] pro-
poses to learn the visual representation by using the Siamese-triplet
network and KCF [18] tracker with ranking loss. All these works
treat the task in an unsupervised manner, however, most of them
use the consecutive frames from videos as their training dataset.

Different from them, our proposed method can use only images to
train the object tracker without any labels.

3 THE PROPOSED METHOD
In this section, we will present the details of the proposed self-
supervised Siamese network-based tracker which can be effec-
tively trained offline without any annotations. To this end, we
adopt SiamFC [2] as our base tracker. The overview of our train-
ing pipeline is shown in Fig. 2. For the unsupervised trackers [43],
multiple frames in the same video need to be provided as train-
ing data. Different from other unsupervised and online updating
approaches, what we only need is a single image for creating a
training pair. A training pair is then weighted with our proposed
anti-clutter weighting, and adversarial saliency-map-based data
augmentation is adopted to increase the diversity of the training
data. In other words, the training data of our proposed method
can be any image-based dataset since the proposed approach does
not need any annotations and does not rely on temporal relations;
moreover, our model is trained in an offline manner.

3.1 Fully-convolutional Siamese Network
SiamFC [2] is a framework of fully-convolutional Siamese network
for object tracking tasks. The core idea is to solve tracking as a
cross-correlation and similarity learning problem [33, 38, 55].

𝑓 (𝑧, 𝑥) = 𝜙 (𝑧) ∗ 𝜙 (𝑥) (1)

Given a template image 𝑧 and a current search image 𝑥 , a response
map is obtained by a cross-correlation operation (∗) between 𝜙 (𝑧)
and 𝜙 (𝑥). The backbone network is denoted as 𝜙 (·) and shares the
same weights for two inputs 𝑧 and 𝑥 . Therefore, the response map
represents the similarity between the template image 𝑧 and each
window corresponding to the search image 𝑥 . Since SiamFC aims
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Figure 3: Illustrations of the concept about “background
tracking”. The predicted response map is resized to 255×255
for better visualization. (a) denotes a meaningful pair that
has fewer large positive values of predicted response map
since the template region is unique in the search region. (b)
denotes a meaningless pair and the predicted response map
tend to be flat (many large positive values) since the tem-
plate region is a common pattern in the search region.

to learn a similarity function, the loss function 𝐿𝑠𝑖𝑎 is calculated as:

𝐿𝑠𝑖𝑎 (𝑍,𝑋 ) =
1
𝑁

∑
𝑘

𝑙 (𝑆 (𝑘) , 𝑌 (𝑘) ) (2)

where 𝑙 (·, ·) is the balanced cross entropy loss, 𝑆 denotes the pre-
dicted score map and 𝑌 denotes a ground truth label we created.
𝑍 = {𝑧𝑘 }𝑁𝑘=1 is a set of target templates, 𝑋 = {𝑥𝑘 }𝑁𝑘=1 are the corre-
sponding search images, and 𝑁 is the batch size. More details can
be referred to [2].

3.2 Self-supervised Tracking
To adapt the supervised Siamese-based trackers into self-supervised
ones, we can take advantage of the fact that an image and any
cropped region of it form a natural pair for self-sampling. We use
SiamFC as our base tracker and propose our 𝑆2SiamFC with several
strategies to unveil the potential of unlabeled images. Given an
unlabeled image 𝐼 , we randomly select a region 𝑅𝑧 from 𝐼 as a tem-
plate and enlarge the region centered at 𝑅𝑧 to get a corresponding
search region 𝑅𝑥 . In this way, we can create a ground truth label 𝑌
centered at the search region and set elements of the ground truth
label to 1 when they are located within a radius 𝑟 of the center. We
will show how to shorten the performance gap between supervised
and self-supervised SiamFC with the proposed strategies in the
following subsections.

3.3 Anti-clutter Weighting
In Sec. 1, we have mentioned that one of the challenges in our
task is to alleviate the negative effect of noisy unlabeled data. In
UDT [43], it proposes a strategy to abandon the top 10% of the
training pairs with the highest losses. In our method, we adopt
an adaptive weighting instead of discarding part of the training
data because we do not want to exclude the meaningful training
pairs (e.g., hard positive and negative samples) which may include

rich and learnable information. Alternatively, we propose the Anti-
clutter weighting to adjust the importance of each training pair
adaptively. As mentioned in Sec. 3.2, we randomly crop a region
from the training image to form our training pair. As shown in
Fig. 3, there is no guarantee that the sampled regions contain some
unique objects for tracking due to the randomness. The core idea
of the proposed Anti-clutter weighting is to filter the training pairs
like Fig. 3(b) due to the randomness of self-sampling, which the
template region does not contain any clues (e.g., background that
without unique pattern) for learning similarity. Therefore, the Anti-
clutter weighting actually performs a re-weighting based on the
occurrences of template region in the search region (response map).
Our assumption is that the content of the template could be just
some meaningless object, and for these cases, the output of the re-
sponse map is flat and this training sample is unreliable for training.
In contrast, if there are some objects with unique pattern in the
template like Fig. 3(a), then this training pair is supposed to be more
reliable (provides more clues for learning) than the former, and it is
worth paying more attention. To this end, we propose an adaptive
weighting strategy as in equation (3) to determine the importance
of each training sample by considering the proportion of relevant
responses in the response map.

Λ
(𝑘)
𝐴𝐶

= [1 −
∑𝑤−1

𝑗=0
∑ℎ−1
𝑖=0 1(𝑆 (𝑘)

𝑖, 𝑗
, 𝛽)

𝑤 × ℎ ]𝛾 (3)

where Λ(𝑘)
𝐴𝐶

represents the Anti-clutter weight of the 𝑘th training
sample. 𝛽 and 𝛾 respectively denote positive threshold and the
power which controls the scale of weights. All of them are scalars.
𝑤 and ℎ denote the size of the response map. 𝑆 (𝑘)

𝑖, 𝑗
is the value of the

𝑖th row and the 𝑗 th column in the response map of the 𝑘th training
sample. An indicator function 1(𝑆 (𝑘)

𝑖, 𝑗
, 𝛽) is defined as:

1(𝑆 (𝑘)
𝑖, 𝑗
, 𝛽) =

{
1 if 𝑆 (𝑘)

𝑖, 𝑗
≥ 𝛽

0 otherwise
(4)

Therefore, we can formulate the Anti-clutter loss function 𝐿𝐴𝐶
as follow:

𝐿𝐴𝐶 (𝑍,𝑋 ) =
1
𝑁

∑
𝑘

Λ
(𝑘)
𝐴𝐶

∗ 𝐿𝑠𝑖𝑎 (𝑧 (𝑘) , 𝑥 (𝑘) ) (5)

3.4 Adversarial Appearance Masking
One of the main differences between supervised SiamFC and the
proposed self-supervised tracking is that SiamFC chooses pairs
from different annotated frames in the same video for learning
appearance-robust feature representation. In a self-supervised case,
the model can only capture a limited amount of appearance varia-
tions of the target from a single image. To address this challenge,
we adopt adversarial appearance masking where we adaptively
black out the saliency region during the training stage to make
our model more robust to the appearance variation of the target.
It is similar to fine-grained visual classification solution [19], but
we adopt the Guided Gradient-based methods [27, 35] to get the
saliency map instead of learning an attention module during train-
ing. The reason is that the saliency map [19, 27, 35, 59, 62] can give
us the information about which regions are grounded for a certain
output. After appropriately dropping the content according to the
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masking module.

saliency map, our model can learn the appearance-robust feature in
both partial and adversarial ways during the offline training stage.

Saliency map generation. Inspired by Grad-CAM [35], we
propose to obtain the saliency map [27, 35, 62] in a self-guidance
manner by doing backpropagation from the location of the ground
truth label which is positive in the response map. Different from
the weakly supervised object localization tasks [27, 35], we are
interested in the saliency map for each filter instead of the global
saliency since those saliency maps can be used to indicate the most
salient region for each filter. We then choose one of those saliency
maps as a mask and force our model to learn the other relevant
context information of the target. In this way, the model is forced
to correctly predict the similarity when some important details are
not available. The detailed pipeline is shown in Fig. 4.

To be more precisely, the saliency map can be obtained by com-
puting the gradient of the output score 𝑆 with respect to the tem-
plate feature map 𝜙 (𝑧) (i.e., output of the last convolution layer of
the backbone network). Thus, we first compute the average positive
response value from these positions:

𝑆 =
1
𝑍

∑
(𝑖, 𝑗) ∈𝑃

𝑆𝑖, 𝑗 (6)

where 𝑃 denotes the set of 2D positions with positive labels, 𝑆𝑖, 𝑗 ∈ R,
denotes the response value of the position (𝑖, 𝑗) in the response
map, and 𝑍 represents the number of elements of set 𝑃 , i.e., we
compute the average output where the label is set to 1.

After that, we can compute the channel importance weight 𝛼 =

{𝛼𝑐 }𝐶𝑐=1 defined as below:

𝛼𝑐 =
1

𝐻 ×𝑊
∑
𝑖

∑
𝑗

𝜕𝑆

𝜕𝜙 (𝑧)𝑐
𝑖, 𝑗

(7)

where 𝜕𝑆
𝜕𝜙 (𝑧) ∈ R𝐻×𝑊 ×𝐶 , and the channel importance weight 𝛼𝑐 is

the gradient term after global average pooling. Then, the feature
map 𝜙 (𝑧) will be passed through a depth-wise convolution layer
followed by a 𝑅𝑒𝐿𝑈 layer, noting that the kernel of the convolution
layer is set to 𝛼 whose shape is R1×1×𝐶 , and 𝐶𝑜𝑛𝑣𝑑𝑤 (·) means the
depth-wise convolution layer, so the saliency map is computed by:

𝐴 = 𝑅𝑒𝐿𝑈 (𝐶𝑜𝑛𝑣𝑑𝑤 (𝜙 (𝑧), 𝛼)) (8)

where the size of 𝐴 should be R6×6×256 in this case.
Appearance masking. Afterward, we upsample the map 𝐴 to

the original size of the target template to get the fine-grained pixel-
wise saliency map, normalize each value from 0 to 1 in the entire
map, and use a threshold function to filter the regions with low
response. Then, we randomly choose one channel of the map with
salient regions and mask the template image with those regions.
The masked regions will be padded with the average color of the
image. Thus, the adversarial training sample can be derived by:

𝐴𝑡ℎ = 𝑇 (𝐴̃) (9)

𝑧 (1) = 𝑧 − (𝑅𝑎𝑛𝑑 (𝐴𝑡ℎ) ⊙ 𝑧) (10)
𝑧 (𝑚) = 𝑧 (𝑚−1) − (𝑅𝑎𝑛𝑑 (𝐴𝑡ℎ) ⊙ 𝑧 (𝑚−1) ) 𝑚 = 2, 3, 4, ... (11)

where 𝑧 is the template image, 𝐴̃ is the set of saliency maps after the
upsampling and normalization, and 𝑇 (·) is the threshold function
which binarizes the input if its value is larger than a critical value.
The function 𝑅𝑎𝑛𝑑 (𝐴𝑡ℎ) randomly chooses one channel of𝐴𝑡ℎ with
salient regions. The size of the output from 𝑅𝑎𝑛𝑑 (𝐴𝑡ℎ) corresponds
to 𝑧. 𝑧 (1) indicates the first masked image from the raw image 𝑧,
and 𝑧 (𝑚) indicates the𝑚-th masked one from 𝑧 (𝑚−1) .

In this case, the model will not merely focus on the particular
parts of the object to determine where it should appear in the search
image, instead, it learn the global details of the complete target to
locate it accurately. After obtaining the dropped images, the final
loss can be computed by:

𝐿 = 𝜆 ∗ 𝐿𝐴𝐶 (𝑧, 𝑥) + (1 − 𝜆) ∗
𝑘∑
𝑖=1

𝐿𝐴𝐶 (𝑧 (𝑖) , 𝑥) (12)

where 𝜆 controls the ratio between the two losses and set to be 0.7
in our case. In addition, we also use common image augmentation
(e.g., random rotation, color jitter, etc.) to enhance our datasets.

3.5 Hard Negative Mining by Feature
Clustering

In order to further improve the appearance robustness and make
the model robust to more complex scenes in practice, we perform
hard negative mining to find more difficult situations from the
training images for better model training, which is proved to be
effective in [64]. To this end, training data are divided into𝐾 groups
by K-means clustering instead of forming the negative pairs using
annotated categories. We regard the feature extracted by the pre-
trained backbone from the self-supervised learning can express its
characteristics, which can help us to choose a reasonable hard neg-
ative pair for training. In the first training stage, we train our model
in a self-supervised manner and obtain a pretrained weight of the
backbone network. Then, we choose one frame from each video in
our training dataset and resize them to 255 × 255 followed by pass-
ing these images through the pretrained backbone network which
we obtained previously. After obtaining all feature maps Φ(𝑋 ), we
propagate those feature maps to the global average pooling layer,
and use K-Means Clustering to cluster them into K classes where
we use𝐾 = 100 for all our experiments. In the second training stage,
in addition to the original positive training pairs, we produce some
pairs in which the template and search image are from the same
class but not from the same image, as our hard negative training
samples.



Table 1: Comparison with the state-of-the-art supervised and unsupervised trackers in terms of Accuracy (A), Lost Number
(Lost) and Expected Average Overlap (EAO) on the VOT2016 benchmark.

Supervised Unsupervised A ↑ Lost ↓ EAO ↑
SiamRPN [26]

√
0.56 - 0.341

C-COT [13]
√

0.539 - 0.331
UDT+ [43]

√
0.54 66 0.301

UDT [43]
√

0.54 102 0.226
KCF [18]

√
0.49 122 0.192

SCT [7]
√

0.48 117 0.188
DSST [10]

√
0.53 151 0.181

Supervised SiamFC [2]
√

0.532 99 0.235
𝑆2SiamFC

√
0.493 137 0.215

𝑆2SiamFC(Linear)
√

0.493 116 0.232

Table 2: Comparison with the state-of-the-art trackers in terms of Accuracy (A), Robustness (R) and Expected Average Overlap
(EAO) on the VOT2018 benchmark.

Supervised Unsupervised A ↑ R ↓ EAO ↑
SiamRPN++ [25]

√
0.600 0.234 0.414

ATOM [8]
√

0.590 0.204 0.401
SiamRPN [26]

√
0.586 0.276 0.383

DCFNet [44]
√

0.470 0.543 0.180
Staple [1]

√
0.530 0.688 0.169

KCF [18]
√

0.447 0.773 0.135
Supervised SiamFC [2]

√
0.503 0.585 0.188

𝑆2SiamFC
√

0.463 0.782 0.180
𝑆2SiamFC(Linear)

√
0.449 0.642 0.190

4 EXPERIMENTS
In this section, we provide the details about our experiment set-
ting and conduct several experiments on the challenging visual
tracking datasets, VOT2016 [21] and VOT2018 [22], to verify the
effectiveness of the proposed 𝑆2SiamFC tracker; moreover, we also
perform detailed ablation studies to evaluate the contributions of
each proposed component and a semi-supervised tracking experi-
ment which benefits from our single image training.

4.1 Implementation Details
In order to show the proposed methods can better utilize the power
of unlabeled dataset and achieve comparable performance with
other supervised methods. We adopt the same training dataset,
ILSVRC2015 VID [34], as supervised SiamFC [2] does but without
any annotations and only use single frame from each video. The rea-
son we train our model on IILSVRC2015 VID is for a fair comparison
with the supervised SiamFC. In other words, it means the proposed
method can be competitive with its supervised counterpart, even
though they both use training data from the same domain. We fol-
low the rest of settings such as scale evaluation and learning rate as
used in SiamFC. The template image and search image are resized to
127× 127 and 255× 255 respectively. Since our method runs exactly
the same as SiamFC at the inference stage, our running speed is also
86 fps as SiamFC. During the inference stage, the linear updating
template feature [41] as 𝜙 (𝑧)𝑡+1 = 𝜆𝑢 ∗ 𝜙 (𝑧)𝑡 + (1 − 𝜆𝑢 ) ∗ 𝜙 (𝑧)𝑡−1,
where 𝜆𝑢 = 0.0102, can further improve the robustness against

challenging scenarios since the linear update can provide temporal
information (from multiple frames online) to the self-supervised
SiamFC to catch up with the supervised SiamFC.

4.2 Experiments on VOT
In this section, we compare our method with other state-of-the-
art methods on the challenging tracking datasets, VOT2016 [21]
and VOT2018 [22]. Both datasets contain 60 short challenging se-
quences respectively. There are several visual attributes in each
frame from the videos, including occlusion, illumination change,
motion change, size change, camera motion, or unassigned. The
criterion includes Accuracy (A), Robustness (R) and Expected Aver-
age Overlap (EAO). Since VOT aims at short-term visual tracking,
a re-initialization mechanism will be involved if tracking has failed.
More details about the criterion can be referred to [21, 22].

VOT2016.We compare ourmethodwith our baseline supervised
SiamFC and other trackers on the VOT2016 benchmark. As shown
in Table 1. After adopting simply linear update strategy [41], the
performance of the proposed 𝑆2SiamFC tracker achieves 0.232 in
term of EAO, which is a little lower than the supervised SiamFC
(0.235) and higher than UDT (0.226), and it performs favorably
against correlation filter based methods like KCF, SCT, and DSST.
UDT+ performs an advanced online parameters updating [9] to
boost performance. By contrast, 𝑆2SiamFC is trained offline but
shows competitive results. The state-of-the-art supervised methods
such as SiamRPN and C-COT achieve leading performance but
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Figure 5: Visual examples of adversarial appearance mask-
ing. (a), (b), (c) denote raw image, image masked once, and
image masked twice respectively.

rely on the large-scale annotated datasets or pretrained weights for
training. Better than them, we only utilize training pairs from the
same image and train in a self-supervised and offline fashion.

VOT2018. The evaluation criterion of VOT2018 is the same as
VOT2016, but the testing sequences are more challenging because it
replaces 10 easiest clips with more difficult sequences. The compari-
son is shown in Table 2. The performance of our tracker with linear
update achieves competitive results against to SiamFC, DCFNet,
Staple, and KCF. We do not list the performance of the unsuper-
vised tracker UDT since the results are not available in their paper
for VOT2018. Methods like SiamRPN++ and ATOM achieve state-
of-the-art performance and benefit from pretrained weights and
multiple large-scale datasets.

4.3 Ablation Studies
To investigate the impact of each component, we conduct detailed
ablation studies on the VOT2018 dataset. Table 3 shows the details
about the contribution of each strategy mentioned in Sec. 3. Train-
ing SiamFC in self-supervised manner results in performance drop
compared to supervised SiamFC. We compare the self-supervised
baseline with proposed the Anti-clutter weighting, hard negative
mining, adversarial appearance masking and linear update, which
are denoted as AC, HN, AM and LU, respectively. We can observe
that all the proposed strategies improve the baseline in terms of
robustness (R), and expected average overlap (EAO). As shown in
Table 2, the proposed 𝑆2SiamFC employing all the training strate-
gies in Table 3 achieves competitive results against to the super-
vised SiamFC in terms of EAO and demonstrates that our proposed
strategies can be well combined. The reason of the accuracy drop
after adopting all the modules is due to the mechanism of target
re-initialization for the VOT dataset. Since the template will be
reinitialized when a tracking failure happened, the feature of reini-
tialized template will be more similar to the one of the latest target’s
state and thus it is easier to get higher overlapping prediction (i.e.,
higher accuracy). Therefore, we prefer to consider EAO as the over-
all criterion for better understanding. We conclude these gains for
each strategy as follows:

Anti-clutterweighting.The purpose of Anti-clutteringweight-
ing is to suppress the weight of noisy training pairs during training.
In this case, the proposed Anti-cluttering weighting can address this
problem by adjusting the weight for each training sample according
to the distribution of the response map.

Adversarial appearance masking. The Adversarial appear-
ance masking increases the performance significantly since it tack-
les the most important challenge in self-supervised learning: that is,

Figure 6: Examples of our training images. Each block rep-
resents one cluster found by our hard negative mining.

in offline trained self-supervised learning, the model suffers from
learning the similarity from the same image. Fig. 5 shows some
samples of the masked images we adopted in the training stage,
and they help alleviate negative effects caused by the self-sampling
training mechanism and aim to learn other relevant context infor-
mation of the tracked target. We also evaluate the performance of
multiple masking in Table 4. Experimental results show that train-
ing with performing the masking operation twice repeatedly on
the same image can achieve the best performance compared with
others. The reason is that applying masking more than twice may
result in erasing most of the informative foreground information
and lead to unstable training. Therefore, we adopt the adversarial
masking twice for the raw image in our method.

Hard negative mining by feature clustering. As shown in
Fig. 6, we observe that the training images in the same cluster
contain similar visual information in terms of the appearance of
scenes, tints, or species. The selected hard negative samples from
same cluster can provide discriminative information which help
the model to learn how to better discriminate distractors. We also
evaluate the effect of choosing different numbers of clusters and
show them in Table 5. We found that the proposed hard negative
mining increase the performance effectively. Result with 𝐾 = 100
receive the best performance and there are about 40 videos will be
group into the same cluster.

4.4 Comparison with Supervised SiamFC
In order to compare supervised SiamFCwith the proposed 𝑆2SiamFC,
we investigate the strengths and drawbacks by analyzing the video
level difference. The results are shown in Fig. 7, we found that
𝑆2SiamFC performs more robust on objects that are not common
in training dataset. Although SiamFC performs better in the cases
like bolt1 and basketball, 𝑆2SiamFC can also track the target suc-
cessfully for around 100 frames in bolt1 and around 400 frames in
basketball even in the complex situations but encounter the issues
of distractors and scale variations of target.



Table 3: Ablation study of proposed strategies on the VOT2018 dataset. SS, AC, HN, AM, LU represent self-supervised, Anti-
clutter weighting, Hard Negative mining, Appearance Masking, Linear Update [41] respectively.

SS AC HN AM LU A ↑ R ↓ EAO ↑√
0.472 1.232 0.130√ √
0.476 1.110 0.136√ √
0.481 1.157 0.135√ √
0.473 0.871 0.166√ √ √ √
0.463 0.782 0.180√ √ √ √ √
0.449 0.642 0.190

Ground TruthOurs (SS) SiamFC (FC)
FC Lost

FC Lost

SS Lost

SS Lost

Figure 7: Qualitative evaluation between the 𝑆2SiamFC
(Ours) and supervised SiamFC on 4 videos from VOT2018.
“FC” and “SS” denote SiamFC and 𝑆2SiamFC respectively.

Table 4: Results of applying masking on the VOT2018
dataset. The subscript refer to how many times we repeat-
edly apply the masking operation.

A ↑ R ↓ EAO ↑
Mask1 0.464 0.815 0.171
Mask2 0.463 0.782 0.180
Mask3 0.468 0.843 0.169

4.5 Semi-Supervised Tracking
Apart from offline self-supervised learning, the proposed strategies
can be also deployed on supervised methods to online fine-tune the
model as semi-supervised learning. During the evaluation, we can
take the initial frame as the training image without annotations,
which is benefited from our single image self-training.We use Adam
optimizer with a small learning rate 1 × 10−5 for fine-tuning. As
shown in Table 6, this self-supervised fine-tuning further improves
the performance of SiamFC with only 5-or 10-iteration updating.
It shows that the proposed strategies can also help the supervised
trackers adapt to different scenarios since it only requires one unla-
beled image for fine-tuning, which is hard to be achieved by other
approaches that require multiple consecutive frames for training.

Table 5: Results of generating a different number of cluster
for hard negative mining on the VOT2018 dataset.

A ↑ R ↓ EAO ↑
𝐾 = 0 0.475 0.866 0.167
𝐾 = 50 0.474 0.810 0.173
K = 100 0.463 0.782 0.180

Table 6: Results of the supervised SiamFCwith the proposed
approachfine-tuned using the initial frame on theVOT2018.

Iterations 0 5 10
EAO ↑ 0.188 0.200 0.201

5 CONCLUSION
In this paper, we propose a novel self-supervised framework for
visual tracking by utilizing the fact that an image and any cropped
region of it can form a natural pair for self-training. Besides, the
proposed approach can be trained offline with only images and
without any requirement of annotations. The proposed anti-clutter
weighting adjusts the contribution of each training pair adaptively
in order to tackle the problem of background tracking; also, we
propose adversarial appearance masking to address the issue such
as the lack of appearance variations of target by combining saliency
map with adversarial learning. With SiamFC as our backbone, we
have shown that we can achieve competitive performance with
other state-of-the-art supervised and unsupervised methods on the
challenging tracking datasets, VOT2016 and VOT2018. Moreover,
We believe that there is no conflict between video-based unsu-
pervised trackers like UDT and the proposed approach. On the
contrary, since the proposed approach can be trained using unla-
beled images, the pretrained tracker can then be used in the setting
of UDT for videos. Ideally, it allows them to employ better temporal
consistency constraints and leave the studies as the future work.
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