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ABSTRACT
Micro-expressions (MEs) are important clues for reflecting the real
feelings of humans, and micro-expression recognition (MER) can
thus be applied in various real-world applications. However, it is dif-
ficult to perceive and interpret MEs correctly. With the advance of
deep learning technologies, the accuracy of micro-expression recog-
nition is improved but still limited by the lack of large-scale datasets.
In this paper, we propose a novel micro-expression recognition ap-
proach by combining Action Units (AUs) and emotion category
labels. Specifically, based on facial muscle movements, we model
different AUs based on relational information and integrate the AUs
recognition task with MER. Besides, to overcome the shortcomings
of limited and imbalanced training samples, we propose a data aug-
mentation method that can generate nearly indistinguishable image
sequences with AU intensity of real-world micro-expression im-
ages, which effectively improve the performance and are compatible
with other micro-expression recognition methods. Experimental
results on three mainstream micro-expression datasets, i.e., CASME
II, SAMM, and SMIC, manifest that our approach outperforms other
state-of-the-art methods on both single database and cross-database
micro-expression recognition.
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1 INTRODUCTION
“Most lies succeed because no one goes through the work to figure out
how to catch them”

— Paul Ekman (1934-)
Different from facial expressions, Micro-expressions (MEs) are sub-
tle and spontaneous facial muscle movements that usually last
less than 200ms, which cannot be hidden even for professional
actors [7]. Therefore, MEs are considered as the real reflections of
human emotion [30] and are especially useful in high-risk situa-
tions, e.g., depression recovery test [54], negotiation with terrorists
[39], criminal investigations [7]. Take the depression recovery test
as an example. Patients with major depressive disorder require the
interviewwith psychiatrists tomake sure that they are recovered for
leaving the hospitals; otherwise they may commit suicide after leav-
ing. In this case, they may pretend to be fine by fake smiles, which
could easily fool facial expression recognition systems. In contrast,
MEs reveal their true mental states but are inclined to be ignored
since they only show up for less than 200ms during the interview.
Therefore, Micro-Expression Recognition (MER) plays an important
role in interpreting people’s genuine emotion, which can facilitate
a variety of practical applications in our daily life [31, 39, 55].

In the last decade, early approaches of MER are based on hand-
crafted feature extraction according to the survey in [31], e.g. local
binary pattern (LBP) and local quantized pattern (LQP) for spatial
texture features, LBP on three orthogonal planes (LBP-TOP) for
spatio-temporal features. However, LBP-TOP and its variants are
unable to recognize the subtle motion of facial movements.With the
advance of deep learning technologies, a recent line of research stud-
ies the MER problem by data-driven approaches [16, 17, 36, 43, 44].
For instance, 3DConvNet is used in [36] to discover the spatio-
temporal relationship between ME sequences with high-level fea-
tures. Monu et al. [44] first acquires minute variations of a ME
sequence in an RGB image using dynamic imaging technique and
then spots these variations with a simple convolution network.
However, due to the limited amount of ME training samples, deep
models tend to be restrained, and thus the deep relations between
features remain tangled. One promising solution is to leverage the
Action Units (AUs) of Facial Action Coding System (FACS) [10, 41]
to identify the important face regions and to extract meaningful
features from the interplay of different AUs for MER. However, cur-
rent works only focus on detecting AUs without further modeling
the relations in between for MER.

In fact, it is challenging to recognize MEs due to the following
three issues: i) Subtle changes in a short period. The low intensity of
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spontaneous and brief facial movements are difficult to be directly
extracted. Therefore, after being trained by professional micro-
expression training tools, humans still detect and recognize MEs
from videos with low accuracy [9]. ii) Complicated interplay between
facial regions. Different MEs are based on different combinations of
facial regions instead of one important region. For example, happi-
ness requires flexing muscles around the mouth and contracting the
muscles around eyes (called the orbicularis oculi). Without any of
them, it can be a fake smile or a squinting. iii) Insufficient and unbal-
anced training data. The existing ME datasets [6, 24, 47, 48] contain
a limited amount and are heavily unbalanced due to the collection
difficulties, e.g., fear is hardly triggered. The limited amount of data
makes the training of an end-to-end deep learning model challeng-
ing. On one hand, the recognition model suffers from overfitting
issue due to the limited labeled data, resulting in low accuracy
when recognizing unseen data. On the other hand, training an MER
model on a dataset with the unbalanced classes favors the majority
class, resulting in severely biased prediction results.

Therefore, to address these issues, we propose two modules: i)
AU-assisted Graph Attention Convolutional Network (AU-GACN),
which extracts discriminative features for subtle MEs by fully ex-
ploiting the relation between AUs to address the first and second
challenges, and ii) AU Intensity Controllable Generative Adversar-
ial Nets (AU-ICGAN), which effectively generates the synthetic
data of MEs for addressing the third challenge and enabling the
training of AU-GACN. Specifically, since AU labels can be vital
hints for further emotion label classification, in addition to learning
micro-expression classifiers by minimizing label errors between
predicted emotion labels and the ground-truth emotion labels, AU-
GACN adds AU classification as an auxiliary task. Firstly, we apply
a lightweight 3D ConvNet backbone network to extract the spatio-
temporal features for AUs. Afterward, the AU features are further
used as the node features of AU relation graph. AU-GACN leverages
self-attention graph pooling and graph convolutional networks to
enhance the AU node features for ME classification. Since well-
defined muscle information (i.e., AUs) can be vital hints to MER,
instead of merely using discrete emotion classes [31], we propose a
new loss combining the AU multi-label loss and ME classification
loss to train the proposed AU-GACN.

Moreover, to address the third challenge, we propose AU-ICGAN
for MER task to enrich the limited training samples, preventing our
deep neural network from overfitting. Specifically, the proposed
data augmentation approach is designed to synthesize facial im-
ages conditioned on AU intensity extracted from real-world micro
expression images. Therefore, in addition to the GAN loss and AU
intensity loss, we take the image structure similarity along with im-
age sequence authenticity into consideration to make generated ME
sequences more realistic. Therefore, the proposed AU-ICGAN can
be more precise on simulating facial movements with microscale
and resulting micro expression image sequences are convincing.
The contributions of this paper are summarized as follows.

• In this paper, we propose AU-assisted Graph Attention Con-
volutional Network (AU-GACN), which effectively integrates
AU recognition task with MER and fully exploits AUs rela-
tional information. To the best of our knowledge, this is the
first work that integrates AU detection with MER.

• To alleviate the limited and unbalanced problem of existing
MER datasets, a new data augmentation method is proposed
for MER, namely, AU Intensity Controllable Generative Ad-
versarial Nets (AU-ICGAN), which can generate diverse data
for learning-based approaches on MER task.

• The experimental results verify that our method achieves
better performance for both merging the datasets into 3
categories and the original dataset categories for MER.

2 RELATEDWORK
2.1 Micro-Expression Recognition
In the last decade, many works [12, 47] used hand-crafted feature
extractors, e.g., Local Binary Pattern histograms from Three Or-
thogonal Planes (LBP-TOP) [46], Histogram of Oriented Optical
Flow (HOOF) [52]. However, the features are usually low-level
representations, e.g., intensities, gradients, without considering
explicit semantic information. Recently, it has been proved that
deep learning-based approaches are powerful for extracting dis-
criminative features in many applications [13, 14, 37]. Therefore,
one promising solution is to exploit deep learning model to extract
spatio-temporal features for MER. For example, Kim et al. [17] used
convolutional neural networks(CNN) to encode micro-expressions
spatial features, and then applied the long short-term memory
(LSTM) recurrent neural networks to learn temporal features of
micro-expressions. To further improve the performance, Enriched
Long-term Recurrent Convolutional Network (ELRCN) [16] was
proposed to i) enrich the spatial dimension by stacking the optical
flow image, optical strain image and gray-scale raw image, and ii)
enrich the temporal dimension by stacking deep features. However,
the minor difference of micro-expressions in the spatial domain
is inclined to be ignored without being jointly extracted in the
temporal domain. In contrast, our proposed spatio-temporal learn-
ing backbone adopts 3D ConvNets with the advantage of learning
features from both motion and appearance simultaneously.

2.2 Facial AU Detection
Instead of predictingmicro-expression labels directly from the input
image sequence, the facial muscle movements represented by AUs
can serve as hints for MER task. There are many works about AU
occurrence detection [8, 22, 23, 29], which is considered as a multi-
label classification problem. For instance, several works considered
the relationships on various AUs and modeled AU interrelations
to improve recognition accuracy [4, 21, 26]. However, most works
relied on probabilistic graphical models with manually extracted
features [5, 53], which limits the extension for deep learning. Given
that the graph has the natural ability of handling multi-relational
data [4], Liu et al. [26] proposed the first work that employed GCN
to model AU relationship. The cropped AU regions by EAC-Net
[23] were fed into GCN as nodes, after that the propagation of the
graph was determined by the relationship of AUs. Li et al. [21]
used a structured knowledge-graph for AUs and integrated a Gated
GNN (GGNN) to generate enhanced AU representation. Although
existing researches effectively detect AUs, which characterize fa-
cial muscle movements, AU relational information has not been
exploited for the MER task. To the best of our knowledge, this is
the first work that integrates AU detection with MER.



2.3 Facial Expression Data Augmentation
Different from the data for facial expression recognition, existing
databases for MER contain limited amounts of data since it is chal-
lenging to trigger MEs [6, 24, 47]. Data augmentation is a common
technique to enlarge the database for improving the results, e.g.,
cropping [45], flipping [40], rotating [15, 44]. For facial expression
recognition, Yu et al. [49] modified the saturation and brightness
of each image to generate extra training data. Moreover, several
noise models, e.g., Gaussian noise model, pepper and salt model,
were employed on original images for data augmentation [28, 50].
However, the diversity of training samples is not improved since
they cannot model unseen facial expressions. Recently, model-based
technologies have been successfully applied to generate diverse
training samples [1, 2, 19, 25, 51]. For example, [2, 51] generated im-
ages of one subject with different expressions using cGANs [32] by
training the GAN model conditioned on different facial expressions.
However, it is still difficult to generate realistic images with micro-
expressions due to minor changes in a short period. In contrast,
[34] trained their GAN model conditioned on continuous AU in-
tensity, allowing to generate a large range of anatomically possible
facial expressions. Compared with [34], our proposed network for
data augmentation is trained not only conditioned on AU intensity
extracted from real-world micro expression images but also taking
image structure similarity along with image sequence authenticity
into consideration to generate high-quality images with MEs.

3 PROPOSED METHOD
Given a micro-expression sequence, the goal is to classify the emo-
tions. The basic assumption is that AU labels can be vital hints for
further emotion label classification. Therefore, we add AU classifica-
tion as an auxiliary task. Obtained AU nodes features can be further
enhanced for micro-expression classification. However, three key
challenges still arise in the design of the model for micro-expression
classification: i) the low intensity of spontaneous and brief facial
movements are difficult to be directly extracted for anMER network;
ii) the interplay between different AUs are separately modeled and
thus the relationship is missing; iii) there are few micro-expression
datasets with heavily imbalanced categories for micro-expression
classification, which is challenging for training an end-to-end deep
learning model.

To address the first and second challenges, we propose an MER
network that fully utilizes AU information and ME labels, namely,
AU-GACN. The architecture of the proposed AU-GACN is shown
in Figure 1. Firstly, we apply a lightweight 3D ConvNet backbone
network, STPNet, to extract spatio-temporal features for MEs. Sec-
ondly, the extracted features for AUs are further used as the node
features in AU relation graph. We propose to leverage GCNs with
self-attention graph pooling in AU graph relation learning for en-
hancing the extracted features for ME classification. Since well-
defined muscle information (i.e., AU) can be vital hints for micro-
expression recognition compared to using discrete emotion classes
directly [31], the AU multi-label loss and ME classification loss are
combined for training AU-GACN. Moreover, to address the third
challenge, we propose a data augmentation module, AU-ICGAN,
for greatly enriching the limited training data.

3.1 Spatio-temporal ME Representation
Learning

Facial dynamics can be explicitly analyzed by detecting their con-
stituent temporal segments (i.e., onset, apex and offset), where MEs
occur only in a short period. Therefore, the abilities to identify the
period of micro-expression and extract discriminative features are
vital for classifying the micro-expressions. Previous work shows
that performing 3D spatio-temporal convolutions is effective for
capturing more representative features [42]. Nevertheless, applying
deep 3D CNN from scratch significantly increases the computa-
tional cost and memory demand.

Therefore, we adopt the lightweight 3D ConvNet backbone based
on Pseudo-3D [35], STPNet, which factorizes the 3D convolutional
filters (3×3×3) into 2D spatial convolutions (1×3×3) and 1D tem-
poral convolutions (3×1×1), for spatio-temporal feature extraction.
Since the low intensity of spontaneous and subtle facial movements
are difficult to directly extract, we use AU labels to guide STPNet
learning. Due to the space constraint, the layer-wise details of our
backbone are presented in Appendix A of the supplementary ma-
terials. Notably, the last three layers are implemented for Global
Average Pooling (GAP) with feature map size [𝐴, 1], where 𝐴 is the
number of AU in ME datasets (e.g., 𝐴=19 in CASME II dataset). The
obtained feature maps are used to represent AU node features and
fed into the AU graph building.

3.2 AU Graph Relation Learning
AU is an effective description of facial muscle movements, which
can be used for ME analysis. According to statistical and facial
anatomy information, different AUs show strong relationships un-
der different facial expressions [41], e.g., happiness can be the com-
bination of AU12 (Lip Corner Puller) and AU13 (Cheek Puffer). Thus,
by leveraging AU node representations obtained from STPNet, we
construct AU relation graph to explore their structured relation-
ships. Notably, the AU relation graph is composed of a node set 𝑉
and an edge set 𝐸, where each node represents a corresponding AU
associated with representations obtained from STPNet, and edge
relationships are gathered from the training set based on common
facial expressions and facial anatomy analysis [41].

After building AU relation graph, we aim to enhance the AU
node features by considering the co-occurred AUs. Therefore, we
propose to leverage Graph Convolutional Network (GCN) [18] to
model the label correlation. Specifically, GCN takes the node feature
description 𝑋 ∈ R𝑑×𝑁 and adjacency matrix 𝐴𝑑 𝑗 ∈ R𝑁×𝑁 as input
(where 𝑁 represents the number of nodes and 𝑑 stands for the
dimension of feature description of each AU node). The outputs of
𝐿-layer GCN are embedded nodes represented by the last hidden
layer 𝑋 𝑙 . We can represent each GCN layer as,

𝑋 𝑙 = 𝜎 (𝐴𝑑 𝑗 × 𝑋 𝑙−1 ×𝑊 𝑙−1) (1)
where 𝜎 is the non-linear activation function and𝑊 𝑙−1 ∈ R𝑑×𝑑′ is
the (𝑙 − 1)-th weighted matrix as 𝑑 and 𝑑 ′ stand for the input and
output dimension of layer 𝑙 , respectively.

Similar to the pooling operation in typical CNNs, graph pooling
layers can reduce the number of parameters and retain a portion
of nodes of input graphs, which avoids overfitting. Inspired by
[20], after concatenating three sequential GCN layers, the AU node



Figure 1: The overall architecture of our proposed AU-GACN for MER. The input sequence is fed into two main modules:
representation learning module and AU graph relation learning module. It is fed to the representation learning module for
spatio-temporal feature extraction first. GAP is used to output AU node features from the backbone features, which is used
for the AU graph building in the second part. After the graph constructed by AU node passes through three GCN layers, only
important nodes are left through self-attention graph pooling (SAGPOOL layer). The prediction ofmicro-expression categories
is processed through readout layer. In this work, we consider both three emotion labels (i.e., Positive, Negative, Surprise) and
the original emotion labels of the ME datasets.

features are aggregated to the self-attention graph pooling layer
(SAGPOOL in Figure 1). To select useful nodes, we retain a portion
𝑝 ∈ (0, 1] of nodes of input graph based on the top-k strategy [3].

Specifically, SAGPOOL first calculates self-attention scores 𝑍 ∈
R𝑁×1 from the node embeddings of the last layer of GCN. After-
ward, SAGPOOL selects the top-k nodes as follows.

𝑖𝑑𝑥 = 𝑡𝑜𝑝 − 𝑟𝑎𝑛𝑘 (𝑍, [𝑘𝑁 ]), 𝑍𝑚𝑎𝑠𝑘 = 𝑍𝑖𝑑𝑥 , (2)

where 𝑖𝑑𝑥 is the index set of the selected nodes. Finally, SAGPOOL
calculates the pooled feature map as follows.

𝑋𝑜𝑢𝑡 = 𝑋𝑖𝑑𝑥,: ⊙ 𝑍𝑚𝑎𝑠𝑘 , 𝐴𝑑 𝑗𝑜𝑢𝑡 = 𝐴𝑑 𝑗𝑖𝑑𝑥,𝑖𝑑𝑥 (3)

where𝑋𝑖𝑑𝑥,: is the row-wise (i.e. node-wise) indexed feature matrix,
⊙ is the broadcasted elementwise product, and 𝐴𝑑 𝑗𝑖𝑑𝑥,𝑖𝑑𝑥 is the
row-wise and col-wise indexed adjacency matrix. 𝑋𝑜𝑢𝑡 and 𝐴𝑑 𝑗𝑜𝑢𝑡
are the new feature matrix and the corresponding adjacency ma-
trix, respectively. Finally, the readout layer (including global aver-
age pooling and global max pooling) aggregates node features to
construct a fixed size representation, both AU graph features and
topology contribute to ME classification.

3.3 AU-ME Supervised Loss
Since ME data is limited, it is challenging to differentiate emo-
tion labels among input frames. AU features learning can be an
intermediate step for ME classification. Therefore, we treat AU
classification as an auxiliary task for MER and propose a new loss,
namely AU-ME supervised loss, to combine the AU loss and ME
loss. To the best of our knowledge, this is the first MER work that
combines AU loss and ME loss to boost recognition accuracy.

Since multiple AUs can co-occur simultaneously, AU classifica-
tion is a typical multi-label classification task. We compute the BCE
Loss 𝐿𝐴𝑈 for AU nodes which are generated from the STPNet:

𝐿𝐴𝑈 = −𝑤 [𝑦 · 𝑙𝑜𝑔𝜎 (𝑥) + (1 − 𝑦) · 𝑙𝑜𝑔(1 − 𝜎 (𝑥))] (4)

Figure 2: Overview of AU-ICGAN for data augmentation.

where𝑤 is a learnable parameter, 𝑥 is the input and 𝑦 is the target
class. Then we classify 𝑁 AUs (𝑁 is the number of AU) into one
micro-expression category. ME loss 𝐿𝑀𝐸 is calculated by typical
cross-entropy loss. The total loss combines AU loss and ME loss.

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝐴𝑈 + 𝜆 · 𝐿𝑀𝐸 (5)

where 𝜆 is a balanced parameter between AU loss and ME loss.

3.4 AU-ICGAN
Deepmodels forMER, including the proposed AU-GACN, requires a
large and balanced training database to prevent themodel from over-
fitting. Since existing training samples are limited and biased, we
aim to generate synthetic data based on currentmanually-annotated
ME datasets for data augmentation. As AUs represent the facial
muscle movements that correspond to the displayed emotions, the
level of expressive AU can be represented as a continuous value.
Therefore, we propose a novel architecture, namely, AU Intensity



Controllable Generative Adversarial Network (AU-ICGAN), to syn-
thesize ME training samples using the intensity of different AU
combinations.

Specifically, given a face RGB image 𝐼𝑖𝑛 ∈𝐻×𝑊 ×3 and a sequence
of condition sets𝑌𝑐 as input, where𝑌𝑐 ∈𝐾×𝑁 denotes the level of ex-
pressive AUs for𝐾 frames1, we aim to learn a generative model that
generates a sequence of images 𝐼𝑜𝑢𝑡 ∈𝐾×𝐻×𝑊 ×3= [𝐼𝑜1 , 𝐼𝑜2 , · · · , 𝐼𝑜𝑁 ],
of which the face identity is the same as the original input face 𝐼𝑖𝑛 ,
and maximizes the likelihood between 𝐼𝑜𝑢𝑡 and the set of action-
unit target 𝑌𝑐 . In other words, for generator, 𝐺 (𝐼𝑖𝑛 |𝑌𝑐 ) is trained
to transform the original face from single image 𝐼𝑖𝑛 into an image
sequence 𝐼𝑜𝑢𝑡 with spontaneous change of micro expression of
desired condition 𝑌𝑐 .

Inspired by [34], our proposed network for data augmentation
contains two generators for generating: i) the attention mask that
ensures the generator focuses only on those regions responsible of
synthesizing the desired expression and preserve the rest part of
the image, and ii) the RGB color transformation of the entire image
that can be integrated with the attention mask for generating the
face image with the target MEs. Moreover, for the discriminator,
WGAN-GP [11] based critic is adopted to evaluate the quality of
generated image sequences.

Different from [34], the proposed discriminators contain two
branches: i) image quality and ii) video quality. The branch of eval-
uating image quality uses a similar structure as that of PatchGAN
network to classify whether the given image is real or fake patch-by-
patch, and a regression head to regress the resulting AU intensity
and target AU intensity. On the other hand, the branch of evaluat-
ing video quality utilizes a 3DConvNet architecture to distinguish
the synthetic sequences from the real ones and also recognizes the
micro expression to guarantee the quality of the synthetic dataset.
The dual-discriminator design can thus supervise the generator to
synthesize the reasonable ME sequence for the recognition task.
Figure 2 illustrates the overall architecture of AU-ICGAN.

To train the proposed AU-ICGAN, seven losses are designed to
guide the optimization, i.e., adversarial loss 𝐿𝑎𝑑𝑣 , consistency loss
𝐿𝑐 , attention loss 𝐿𝑎𝑡𝑡 , AU intensity loss 𝐿𝐴𝐼 , SSIM loss 𝐿𝑆𝑆𝐼𝑀 , ME
loss 𝐿𝑀𝐸 and sequence authenticity loss 𝐿𝑠𝑎 . Specifically, the first
four terms are similar to [34]. The adversarial loss term 𝐿𝑎𝑑𝑣 is
originally proposed by WGAN-GP [11] to optimize the distribution
of synthesized ME images toward the distribution of real-world ME
images. The consistency loss term 𝐿𝑐 ensures the generator learns
the correct mapping and preserves the person’s texture without
using paired-data. Moreover, the attention loss term 𝐿𝑎𝑡𝑡 helps the
model smoothen the learned attention mask and prevent the mask
from saturation. Finally, the AU intensity loss 𝐿𝐴𝐼 determines if the
synthesized images are exactly with the desired intensity of each
AU respectively. The combination of above four loss terms is for
single image generation.

However, for MER, the facial muscle movements are usually
subtle and the trained recognition network is thus sensitive to
the details of local patterns. Since the original consistency loss
tends to lose such information, we further introduce the loss of
Structural SIMilarity (SSIM) index between the generated image

1𝑌𝑐 can be generated from any micro expression image sequences with annotations,
where every subtle facial movement in 𝐾 images is encoded by 𝑁 AU intensity.

and groundtruth image, denoted as 𝐿𝑆𝑆𝐼𝑀 . SSIM is an indicator that
computes the similarity between two images and thus can evaluate
the quality of the synthesized images in terms of local patterns.
Similar to consistency loss, we encourage the generator to preserve
as many details as possible to synthesize high-quality images.

𝐿𝑆𝑆𝐼𝑀 = E𝐼𝑖𝑛∼P𝑖𝑛

[
𝐿∑
𝑖=1

(1 − 𝑆𝑆𝐼𝑀 (𝐺 (𝐼𝑖𝑛 |𝑌𝑐𝑖 ), 𝐼𝑖𝑛))
]
. (6)

In addition to single image quality, to ensure the generated im-
ages are arranged in a reasonable ME sequence, we utilize several
constraints for the legitimacy of the generated sequences. We first
introduce the micro-expression loss, denoted as 𝐿𝑀𝐸 , to ensure that
the synthesized image sequences satisfy the desired micro expres-
sion. Note that since we generate one image at a time, the generator
with the AU loss 𝐿𝐴𝑈 is only conditioned on the AU intensity of
each image while the resulting ME of the whole sequence remains
unconditioned. Therefore, with ME loss, the generator can restrict
the synthesized results to meet the desired AU and ME in both
image and sequence level. 𝐿𝑀𝐸 can be defined as:

𝐿𝑀𝐸 = E𝐼𝑖𝑛∼P𝑖𝑛
[
∥ 𝐷𝑀𝐸 (𝐺 (𝐼𝑖𝑛 |𝑌𝑐 )), 𝑀𝐸𝑐 ∥22

]
(7)

where𝑀𝐸𝑐 is the ME label of the image sequence with AU intensity
𝑌𝑐 . Last but not least, the sequence authenticity loss 𝐿𝑠𝑎 is employed
to examine if the synthesized sequence is reasonable. During the
process of generating a sequence image by image, the combined
fake sequence may be inconsistent since the image adversarial loss
does not take the full sequence into consideration. To maintain the
consistency of a whole sequence, we use 𝐿𝑠𝑎 to shorten the domain
distance between real-world ME data samples and synthetic ones:

𝐿𝑠𝑎 = E𝐼𝑖𝑛∼P𝑖𝑛 [𝐷𝑆 (𝐺 (𝐼𝑖𝑛 |𝑌𝑐 ))] − E𝐼𝑖𝑛∼P𝑖𝑛 [𝐷𝑆 (𝐼𝑐 )]
+𝜆𝑔𝑝E𝐼∼P

𝐼

[
(∥ ∇

𝐼
𝐷𝐼 (𝐼 ) ∥2 −1)2

] (8)

The overall objective can be expressed as:

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝜆1𝐿𝑎𝑑𝑣 + 𝜆2𝐿𝑐 + 𝜆3𝐿𝑎𝑡𝑡 + 𝜆4𝐿𝐴𝐼
+ 𝜆5𝐿𝑆𝑆𝐼𝑀 + 𝜆6𝐿𝑀𝐸 + 𝜆7𝐿𝑠𝑎,

(9)

where all the𝜆 are the hyper-parameter correspond to the impor-
tance of each term during training. The minimax problem of GAN
training is then defined by:

𝐺∗ = argmin
𝐺

max
𝐷

𝐿𝑡𝑜𝑡𝑎𝑙 (10)

In summary, the proposed AU-ICGAN is able to generate a large
amount of micro expression image sequences given the proper AU
intensity of ME and images of human faces. In addition, the pro-
posed AU-ICGAN also alleviates the unbalanced issue, i.e., some
MEs are rarely to be collected. Therefore, the number of each emo-
tion category is carefully tailored to arrange the proportion of
different emotions in the proposed synthetic dataset to facilitate
the training of AU-GACN.



Figure 3: Synthetic dataset generated by AU-ICGAN from
CASME II dataset with corresponding intensities of domi-
nant AUs.

4 EXPERIMENTS
In this section, the experimental details will be introduced, including
the datasets introduction, experimental setup, baselines, experimen-
tal results and ablation study 2.

4.1 Datasets
Three spontaneous ME datasets are utilized to evaluate our perfor-
mances in the experiments. Chinese Academy of Sciences Micro-
Expression II (CASME II) [47], contains 255 ME sequences from 26
subjects of 7 categories, which are happiness, disgust, surprise, fear,
sadness, repression and others. The second dataset, Spontaneous
Actions and Micro-Movements (SAMM) [6] has 159 ME sequences
from 29 subjects. Different from CASME II, instead of repression,
angry and contempt are obtained in SAMM, resulting in total of 8
categories. The Spontaneous Micro-expression Corpus (SMIC) [24],
is composed of 164 ME sequences from 16 subjects. Sequences in
SMIC are divided into 3 categories of positive, negative and surprise.
Notably, SMIC is not labeled with AU, and the index of apex frames
are not provided. Therefore, we only use SMIC as the testing dataset
for cross-database evaluation in our experiments.

4.2 Experimental setup
We conduct experiments on CASME II and SAMM datasets for sin-
gle database evaluation and then introduce SMIC for cross-database
evaluation to test the robustness of our approach. Notably, aside
from the original emotion classes of 7 and 8 in CASME II and SAMM,
we further divide the data into three categories: positive, negative

2Due to the space constraint, more experimental visulizations are presented
in: https://github.com/AU-GACN/AU-assisted-Graph-Attention-Convolutional-
Network-forMicro-Expression-Recognition

and surprise following the rules provided in MEGC2018 [38]. The
experiments of single database are performed on CASME II and
SAMM with their original emotion labels along with the 3 newly
generated class labels respectively. For cross-database evaluation,
since our proposed approach requires training with AU instance
information, we take training samples from CASME II and SAMM
respectively and acquire the samples from SMIC for testing. All the
experiments are conducted on a workstation running Ubuntu 18.04
with 3.2GHz CPU, 64GB RAM, and NVIDIA GeForce GTX 2080 Ti
GPU. We use PyTorch for the network implementation.
Data Augmentation. To train the proposed AU-ICGAN, we lever-
age an auxiliary macro emotion dataset with a large number of
human face images to jointly train the GAN-based network with a
micro expression dataset. Specifically, AU-ICGAN is trained on the
affectnet database of facial expression [33], along with the training
data of CASME II and SAMM. In existing datasets, as some types
of MEs are difficult to collect, such as fear and sadness, existing
training samples suffer from a serious problem of unequal emotion
category distribution. Therefore, equipped with the well-trained
AU-ICGAN, we carefully generate the synthesized data to provide
300 to 400 samples for each category depending on the distribution
in the real-world datasets. In addition, the numbers of synthesized
samples are specifically tailored for each subject by making differ-
ent subjects to have all types of MEs. The resulting numbers of
image sequences are similar.

As a result, AU-ICGAN generates 2432 and 2161 training samples
from CASME II and SAMM datasets, respectively, which are nearly
ten times greater than that of each original ME database. Moreover,
our synthetic dataset contains more diverse training data than the
real-world databases. Figure 3 shows a visual inspection of synthetic
results along with the target AU intensity generated from CASME
II dataset.3 The results show that most of the generated images
have no significant artifacts and are nearly indistinguishable from
real-world images. Table 1 summarizes the expression levels and
the number of image sequences presented in real-world databases
and our synthetic dataset.
Evaluation Methods. In this paper, we adopt Accuracy (ACC)
and F1-score as evaluation metrics. Two main-stream validation
protocols, Leave One Subject Out (LOSO) and Leave One Video Out
(LOVO) are used here. For LOSO validation, the model leaves out
all samples of one single subject for model performance evaluation,
and all other data are used as training data. The overall perfor-
mance is then evaluated by calculating the average of all results
of different subjects. Similar to LOSO, LOVO validation protocol
requires the model to spare the frames from one video for validation
purpose while all other data are sampled for training. Both LOSO
and LOVO validation are leveraged to verify the performance as
well as the robustness of the model under different situations. Note
that the model is initialized in both LOSO and LOVO protocols
when repeating the training process for different validation objects.

4.3 Baselines
We compare our performance with several state-of-the-art methods
including MicroExpSTCNN [36], ELRCN [16], CapsuleNet [43] and
MER-GCN [27]. To perform the classification of different classes,
3Due to the space constraint, the results of SAMM is presented in Appendix A.2 in the
supplementary materials.



Dataset Happiness Disgust Surprise Fear Sadness Anger repression Contempt Others Total
CASME II 32 63 28 2 4 - 27 - 99 255
synthetic CASME II 384 353 388 294 307 - 389 - 317 2432
SAMM 26 9 15 8 6 57 - 12 26 159
synthetic SAMM 264 281 275 282 284 233 - 278 264 2161

Table 1: A summary of the amount of training samples in real-world and the proposed synthetic dataset.

Method CASME II (3 categories) CASME II SAMM (3 categories) SAMM
ACC F1-score ACC F1-score ACC F1-score ACC F1-score

STCNN 0.610 0.253 0.368 0.132 0.676 0.271 0.289 0.094
ELRCN 0.623 0.342 0.443 0.325 0.691 0.272 0.358 0.066
CapsuleNet 0.568 0.347 0.331 0.194 0.575 0.392 0.259 0.111
MER-GCN 0.544 0.303 0.405 0.163 0.534 0.283 0.294 0.010
Ours 0.712(+8.9%) 0.355(+0.8%) 0.561(+11.8%) 0.394(+6.9%) 0.702(+1.1%) 0.433(+4.1%) 0.523(+16.5%) 0.357(+24.5%)
Table 2: The accuracy (ACC) and F1-Score of different methods under the LOSO protocol on CASME II and SAMM datasets.

Method CASME II (3 categories) CASME II SAMM (3 categories) SAMM
ACC F1-score ACC F1-score ACC F1-score ACC F1-score

STCNN 0.607 0.398 0.407 0.184 0.694 0.424 0.384 0.149
ELRCN 0.609 0.429 0.396 0.197 0.682 0.227 0.359 0.066
CapsuleNet 0.582 0.356 0.324 0.155 0.592 0.384 0.266 0.158
MER-GCN 0.532 0.412 0.398 0.173 0.542 0.257 0.273 0.108
Ours 0.634(+2.5%) 0.521(+9.2%) 0.519(+11.2%) 0.424(+22.7%) 0.721(+2.7%) 0.454(+3%) 0.426(+4.2%) 0.228(+7%)
Table 3: The accuracy (ACC) and F1-Score of different methods under the LOVO protocol on CASME II and SAMM datasets.

all the baselines are only modified with the last layer to predict the
same number of classes. All the hyperparameters of the baselines
follow the setting of the original paper. For ELRCN, we use spatio-
temporal architecture with only optical flow images as the input
since the setting is reported to have the best performance in the
paper. We re-implement all the 4 baseline network architectures
for MER and apply both LOSO and LOVO validation strategy for
evaluations.

4.4 Quantitative Result
Table 2 reports the results under LOSO protocol. The proposed
AU-GACN outperforms other methods in all configurations and
datasets. Since dividing all MEs into 3 categories reduces the recog-
nition difficulty, the overall ACC and F1-score of CASME II and
SAMM datasets in 3 categories are higher than that for the clas-
sification of 7 categories (CASME II) and 8 categories (SAMM).
Moreover, the proposed AU-GACN also has more obvious outstand-
ing performance in 7 categories and 8 categories. For CASME II,
the proposed AU-GACN outperforms other baselines by 11.8% and
6.9% in terms of ACC and F1-score, respectively. For SAMM, the
improvement is more obvious, i.e., 16.5% and 24.6% improvement in
terms of ACC and F1-score, respectively. To complement the LOSO
protocol, we also report the comparison results under the LOVO
protocol in Table 3. Compared with the results of other baselines
in Table 3, our proposed AU-GACN still performs better than the
baselines in all configurations and datasets, especially for the 7
categories of CASME II dataset (22.7%) since our method can be

good at capturing the subtle facial features and further improving
the accuracy of MER.

The inferior performance of other methods may be caused by
the intra-class variations of each subject as these deep models learn
certain appearances from the samples of each subject. Specifically,
ELRCN uses optical flow as representation features which may
eliminate the intra-class information of each subject since only
geometric information of subjects is reserved. Meanwhile, Capsu-
leNet relies on the apex frame as representative features, which
affects its recognition accuracy on the MER dataset lacking reliable
apex frame annotations. Moreover, in most cases, the performance
of MER-GCN is worse than other methods since i) the AU node
features are not learned from the input image and ii) the map-
ping of AUs to emotions is through a simple linear layer without
considering the weights of nodes.

LOSO protocol allows us to evaluate the generalization of different
methods in recognizing MEs on unseen subjects during testing.
We separately take training samples from CASME II and SAMM,
and acquire the samples from SMIC for testing. Table 4 shows the
cross-database validation results. The proposed AU-GACN achieves
better performance than other methods, which shows the ability of
learning intra-class variations among different subjects. Note that
our proposed method outperforms MER-GCN in terms of F1-score
but performs slightly worse than MER-GCN in terms of ACC in the
task of CASME II to SMIC. The main reason for this result is that
the data number of merged 3 classes in CASME II(32 for positive
class, 73 for negative and 25 for surprise) shows the class imbalance.



Method CASME II -> SMIC SAMM -> SMIC
ACC F1-score ACC F1-score

STCNN 0.314 0.190 0.325 0.190
CapsuleNet 0.322 0.152 0.324 0.179
MER-GCN 0.367 0.272 0.361 0.178
AU-GACN 0.344 0.319 0.451 0.309

Table 4: The recognition accuracy (ACC) and F1-Score of dif-
ferent methods for cross-database evaluation.

Method CASMM II SAMM
ACC F1-score ACC F1-score

STCNN 0.368 0.132 0.289 0.094
STCNN + AU-ICGAN 0.411 0.253 0.367 0.167
CapsuleNet 0.331 0.194 0.259 0.111
CapsuleNet + AU-ICGAN 0.368 0.267 0.275 0.193
MER-GCN 0.405 0.163 0.294 0.010
MER-GCN + AU-ICGAN 0.441 0.181 0.328 0.124
AU-GACN 0.492 0.273 0.489 0.310
AU-GACN + AU-ICGAN 0.561 0.394 0.523 0.357

Table 5: The recognition accuracy (ACC) and F1-Score of dif-
ferent methods with and without using our proposed data
augmentation techniques under the LOSO protocol.

Method CASMM II SAMM
ACC F1-score ACC F1-score

STCNN 0.407 0.184 0.384 0.149
STCNN + AU-ICGAN 0.403 0.273 0.383 0.159
CapsuleNet 0.324 0.155 0.266 0.158
CapsuleNet + AU-ICGAN 0.338 0.257 0.259 0.161
MER-GCN 0.398 0.173 0.273 0.108
MER-GCN + AU-ICGAN 0.439 0.186 0.344 0.118
AU-GACN 0.420 0.347 0.409 0.212
AU-GACN + AU-ICGAN 0.519 0.424 0.426 0.228

Table 6: The recognition accuracy (ACC) and F1-Score of dif-
ferent methods with and without using our proposed data
augmentation techniques under the LOVO protocol.

Also, accuracy(ACC) is less sensitive to skewed data than F1-score,
which provides a better measure of the performance of the MER
classifier when dealing with imbalanced data here. This explains
why our ACC is lower but F1-score is higher than MER-GCN.

4.5 Ablation Study
The impact of AU-ICGAN. To validate the effectiveness of the
synthetic dataset generated by our proposed AU-ICGAN, we de-
velop a scheme to remedy the scarcity of real-world datasets. First,
we pre-train the model on the synthetic dataset. Then, the pre-
trained model is further finetuned on target real-world datasets.
The same scheme is applied to other baseline models for fair evalu-
ation. Table 5 and Table 6 show the comparison results under both
LOSO and LOVO protocol. We can observe that for most models,
accuracy is slightly improved with the data augmentation module

Figure 4: AU nodes representation

included, denoting that with more training samples, the recognition
ability will be improved onmost of the deep models. Moreover, with
models pre-trained on the balanced synthetic dataset, the F1-score
of all models are slightly increased, showing the recognition ability
for rare emotions in real-world datasets are improved.
Explainability of AU Node Features The representation learning
module is responsible for extracting the facial spatio-temporal fea-
tures, and the GAP layer can map the 2D feature map extracted by
the 3D ConvNet backbone into 𝐴 single numbers (𝐴 is the number
of AU in ME datasets). Intuitively, 𝐴 numbers can represent the
score of each AU category. To visually display the possibility of
each AU node, Figure 4 shows an example of the top-5 dominant AU
nodes proportion from CASME II dataset. The ME category of the
apex frame from CASMEII is ’‘surprise”, and the decisive AU nodes
are AU2 and AU26. It can be seen from the Figure 4 that AU2 and
AU26 account for the highest score. The AU node features directly
assign the meaning of each channel category, which increases the
explainability of the network due to the nature of GAP.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we propose AU-assisted Graph Attention Convo-
lutional Network (AU-GACN) for micro-expression recognition,
which effectively integrates AU recognition task withMER and fully
exploits AUs relational information. To alleviate the limited and
unbalanced problem of existing MER datasets, a new data augmen-
tation method, AU Intensity Controllable Generative Adversarial
Nets (AU-ICGAN), is proposed, which can generate a large amount
of diverse data for learning-based approaches on MER tasks. Ex-
perimental results manifest that the proposed micro-expression
recognition approach outperforms the state-of-the-art methods.
In the future, we plan to incorporate the AU relation graph with
AU-ICGAN for improving the quality of generated ME sequences.
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Figure 5: Synthetic dataset generated by our proposed data
augmentation method from SAMM. The corresponding in-
tensity of dominant AU for different emotions are shown as
well.

A SUPPLEMENTARY MATERIALS
A.1 Implementation Details of Backbone

Architecture
The main components are three bottleneck building blocks, i.e.,
P3D-A, P3D-B and P3D-C, which are residual-based variants con-
sidering performance and time efficiency. The layer-wise details of
our backbone are presented in Table 7.

Table 7: Backbone Architecture, where Bottleneck-A,
Bottleneck-B, Bottleneck-C indicates the three shortcut
connections in P3D [35]. 𝐿 and 𝐶 denotes the length of
sequence and the number of AU, respectively.

Layer K:Kernel Size; S:Stride Output Shape

Input - [3, 𝐿, 256, 256]
Conv3d K=(1,7,7), S=2 [64, 𝐿, 128, 128]

BatchNorm3d - [64, 𝐿, 128, 128]
Relu - [64, 𝐿, 128, 128]

MaxPool3d K=(2,3,3), S=2 [64, 𝐿/2, 64, 64]
Bottleneck-A K=(1,3,3),(3,1,1) [64, 𝐿/2, 64, 64]
MaxPool3d K=(2,1,1), S=2 [64, 𝐿/4, 64, 64]

Bottleneck-B K=(1,3,3),(3,1,1) [64, 𝐿/4, 32, 32]
MaxPool3d K=(2,1,1), S=2 [64, 𝐿/8, 32, 32]

Bottleneck-C K=(1,3,3),(3,1,1) [64, 𝐿/8, 16, 16]
MaxPool3d K=(2,1,1), S=2 [64, 𝐿/16, 16, 16]

AdaptiveAvgPool3d K=(1,1,1) [64, 1, 1, 1]
Conv2d K=(1,1) [1, C, 1, 1]
reshape - [C, 1]

A.2 Synthetic Results from SAMM
Figure 5 shows the visual inspection of synthetic results from
SAMM. Similar to synthetic CASME II, the generated ME images
with corresponding different AU intensity have no significant arti-
facts and are nearly indistinguishable from real ME sequences.
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