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Facial Chirality: From Visual Self-reflection to
Robust Facial Feature Learning

Ling Lo, Hong-Xia Xie, Hong-Han Shuai, and Wen-Huang Cheng, Senior Member, IEEE

Abstract—As a fundamental vision task, facial expression
recognition has made substantial progress recently. However,
the recognition performance often degrades significantly in real-
world scenarios due to the lack of robust facial features. In this
paper, we propose an effective facial feature learning method that
takes the advantage of facial chirality to discover the discrimina-
tive features for facial expression recognition. Most previous stud-
ies implicitly assume that human faces are symmetric. However,
our work reveals that the facial asymmetric effect can be a crucial
clue. Given a face image and its reflection without additional
labels, we decouple the emotion-invariant facial features from
the input image pair to better capture the emotion-related facial
features. Moreover, as our model aligns emotion-related features
of the image pair to enhance the recognition performance, the
value of precise facial landmark alignment as a pre-processing
step is reconsidered in this paper. Experiments demonstrate that
the learned emotion-related features outperform the state of the
art methods on several facial expression recognition benchmarks
as well as real-world occlusion datasets, which manifests the
effectiveness and robustness of the proposed model.

Index Terms—facial expression, visual chirality, feature disen-
tanglement, deep learning, vision transformer

I. INTRODUCTION

FACIAL expressions can serve as crucial clues in human-
to-human communications and play an important role in

human-machine interaction (HMI) systems. To capture the
universal signal of human-being and interpret the emotional
state of people, robust facial expression recognition (FER) has
become vital and essential in HMI systems [1]–[13].

While researchers have made significant progress on auto-
matic FER, most of the facial analysis works are explored
with the assumption that a human face is a symmetric struc-
ture [14]–[18], i.e., the left and the right halves of a human face
are the same. The symmetric assumption implicitly implies
that the features extracted from a facial image and its mirror-
reflection are highly similar or even identical. However, faces
are not so symmetrical as many think. In fact, psychological
studies of facial asymmetry have revealed that the left and
the right halves of the face differ in emotional attributes

L. Lo, H.-X. Xie are with the Institute of Electronics, National Yang Ming
Chiao Tung Univresity, Hsinchu, 300 Taiwan.
E-mai: {linglo.ee08, hongxiaxie.ee08}@nycu.edu.tw.

H.-H. Shuai is with the Department of Electrical and Computer Engineering,
National Yang Ming Chiao Tung Univresity, Hsinchu, 300 Taiwan.
E-mail: hhshuai@nycu.edu.tw.

W.-H. Cheng is with the Institute of Electronics, National Yang Ming Chiao
Tung Univresity, Hsinchu, 300 Taiwan, and the Artificial Intelligence and Data
Science Program, National Chung Hsing University, Taichung, 400 Taiwan.
E-mail: whcheng@nycu.edu.tw.

Fig. 1. An illustration of facial chirality. The human face is chiral and its
horizontal reflection cannot be superimposed to make the same image, while
an achiral object can be perfectly overlapped with its horizontal reflection.

due to different dominant hemispheres of the brain [19],
indicating that the faces are not horizontally symmetric under
most circumstances. Meanwhile, chirality is a chemistry term
used to describe the situation where two objects that appear
to be similar are not symmetrical when folded over onto
their own mirror-reflection. Especially, an emotional face is
a concrete chiral object since the face should look similar
to its reflection as they are with same facial expression, but
cannot be overlapped onto each other since human faces are
not horizontally symmetric. Previously in our work [20], we
define the asymmetric characteristic of a face image and its
reflection as facial chirality. Fig 1 shows an example of chiral
object with chirality and achiral object without chirality.

Existing FER approaches did not take facial chirality into
consideration, resulting in instability as the model may not rec-
ognize the expression of a well-trained sample after reflected
due to facial asymmetry. Therefore, in this paper, we extend
our previous work [20] and exploit the fact of facial chirality
to discover discriminative features from the facial asymmetry
for effective and robust expression feature learning. Since an
image and its reflection are with identical emotion states, we
believe that only the features they share are the crucial clues
for FER. As a result, we propose a simple but effective feature
disentanglement learning approach to distinguish the decisive
emotion-related information from the emotion-invariant dis-
tortion using facial chirality. A Convolution Neural Network
(CNN) feature extractor is first employed to generate feature
representations. Then, the extracted representations are split
along the channel dimension into emotion-related features
and chirality-related features. Afterward, the split features are
sliced into patches and processed along with a class token
using a transformer encoder, whose self attention layers allow
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the class token to interact with feature patches and learn
useful information for FER. Since emotion-related features
and chirality-related features are mutually exclusive, the model
cannot learn both features simultaneously with the same set
of attention weights of the class token and disentangle the
features successfully. Consequently, we propose a new token,
chirality token, to capture and process the emotion-invariant
features separately and further eliminate the noise for the
robustness of class token. Finally, the class token would be
fed into the emotion classifier for the desired FER. Compared
to our previous approach [20], in addition to separating the
latent features into emotion-related and chirality-related sub-
spaces, the hybrid model proposed in this paper further uti-
lizes the self-attention mechanism in the transformer encoder
and introduces attention weights to different feature patches.
Moreover, the proposed chirality token and class token are
updated independently through two sets of attention weights,
preventing distortion from each other. As a result, the final
classification of both expression and reflection could be more
accurate and robust.

Our main contributions can be summarized as follows:

• We propose a hybrid model for feature disentanglement
that explicitly considers facial chirality to discover dis-
criminative facial features for facial expression recogni-
tion.

• Our model stands on the psychological basis of facial
asymmetry, and the learned features are robust not only to
mirror-reflection but also other real-world occlusion and
pose variation. Additionally, we discuss the effectiveness
of facial chirality and reconsider the value of a deliberate
facial landmark alignment as pre-processing procedure of
FER.

• Experiments illustrate that the proposed model can
achieve accuracy of 0.9120 on RAF-DB and 0.6640 on
Affectnet with a smaller model than other methods that
achieve comparable results, demonstrating its effective-
ness as well as efficiency.

The rest of this paper is organized as follows. Section II re-
views the related works, and Section III presents the proposed
method. Section IV presents the evaluations and conclusions
are offered in Section V.

II. RELATED WORK

A. Facial Expression Recognition

1) CNN-based FER: In the past decade, many efforts have
been made to explore the potential of applying deep learning
on FER task. The majority of them extract discriminative
expression features by using different kinds of CNN-based
models [20]–[27]. Based on psychological theories, Yang et
al. [28] proposed the idea of an Emotion Circle, which
includes emotion polarity, emotion type, emotion intensity,
similarity, and additivity. Unlike most FER models supervised
by the softmax loss, DACL [21] proposed a Deep Attentive
Center Loss to improve intra-class compactness and inter-class
separation in the embedding space.

2) Transformer-based FER: At the same time, the
transformer-based FER method [29], [30] draws inspiration
from the tremendous recent success of transformer in computer
vision, e.g.ViT [31] and Swin Transformer [32]. Transformers
can be utilized to model long dependencies between input
sequences by the global self-attention mechanism. Trans-
FER [29] modeled the relations between different facial parts
via ViT, and proposed a multi-head self-attention dropping
to learn relations among local patches. Visual Transformers
with Feature Fusion (VTFF) [30] integrated LBP features and
CNN features with the global-local attention and global self-
attention for FER.

3) Robustness and efficiency in FER: Faces can suffer
from occlusions, variations in the way the head is posed,
motion blur, etc., which results in significant changes to
their appearance [33], [34]. The FER algorithm therefore
faces a great challenge with robustness [24], [30], [35].
RAN [24] adaptively adjusted the importance of the facial
region to address the occlusion and pose-variant problems. Ma
et al. [30] designed a global self-attention enables the network
to learn the relationships between elements of visual feature
sequences and ignore the information-deficient regions, in case
of occlusions scenarios. Since deep models with excessive
parameters and FLOPs are impractical for real-world appli-
cations, some works propose light-weight FER models [26],
[36]. For example, EfficientFace [26] designed a light-weight
FER architecture from the perspective of the feature extraction
and label distribution learning strategy. However, there are
relatively few FER works that consider both robustness and
efficiency.

B. Facial Symmetric Learning

Most face related studies consider face as a symmetric
structure [14], [15], [37]–[39]. For example, Zhang et al. [14]
encoded facial symmetry to provide additional supervision
for AU intensity estimation, where facial symmetry involves
one face image and its horizontally-flipped image. Wu et
al. [15] assumed the face structure is weakly symmetric, and
proposed a symmetry probability map to measure the degree
of symmetric uncertainty.

However, these previous works overlook the importance
of differentiating the two sides of the face. The general
observation in psychology is that emotional expressions are
more intense on the left side of faces since the right cerebral
hemisphere is dominant for the expression [19]. Lin et al. [40],
for example, explored visual chirality in images of people and
faces using a self-supervised learning approach, and showed
that the chirality of faces can be predicted. This is the first
work that takes a step forward to explore the robust facial
feature learning based on facial chirality. However, there are
few facial expression works extend their researches based
on this hypothesis. Ling et al. [20] is the first research
on FER in explicitly considering facial chirality to discover
discriminative facial features. In this paper, we propose a
hybrid model for learning facial chirality features to enhance
the robustness of FER.



3

Fig. 2. Overall architecture of the proposed approach. (The figure is best viewed in color.)

III. METHODOLOGY

In this section, we introduce an efficient feature disentangle-
ment learning approach to eliminate the bias caused by facial
chirality and discover the decisive information from the noise
for FER. Especially, we apply a hybrid model, which utilizes
the merits of both CNN feature extraction and transformer
encoders for efficient and robust feature learning. The multi-
head self attention mechanism allows the class token to interact
with the embedding patches extracted from a CNN feature
map. Moreover, our proposed chirality token could utilize the
mirror-reflection of an input image and decouple the chirality-
related features for the class token so that it could learn the
crucial emotion-related features for more robust FER.

A. Overview

As face alignment is typically required to align the facial
landmarks and reduce the variation in face scale, a common
assumption is that a more precise alignment can substan-
tially enhance the FER performance. However, whether the
performance between FER and the pre-processing landmark
alignment is positively correlated remains unrevealed. On the
other hand, our approach aims to directly align an image and
its reflection at the emotional state level. With the simple
aligned data provided in datasets, our model can boost the FER
performance significantly compared to baseline with other
deliberate landmark alignment approaches. More discussion
and experiments are presented in Section IV.

Given an image Xo with facial expression label Y , its
mirror-reflection Xr should share the same label Y because
facial expressions are invariant to horizontal flipping. However,
facial chirality would result in differences between the feature
maps of the image pair since the face images are usually not
horizontally symmetric. Here we argue that only the shared
features of the image pair are the crucial clues for FER. Taking
advantage of that, our model takes an image and its mirror-
reflection as input and aims to decouple the identical emotion-
related features from the non-identical chirality-related fea-
tures for more robust expression classification. The proposed
approach contains CNN feature extraction, transformer feature
disentanglement, and two classification heads. Firstly, the input
image pair Xo and Xr would be fed into the CNN feature
extraction backbone F (·, θF ) to get the latent embeddings
Zo and Zr. Then, they are both reshaped and separated into
two sets of patches that are emotion-related and chirality-
related, respectively. Afterward, the emotion-related sets are
appended with the class tokens and processed by the class
transformer encoders TE(·, θTE

), while the chirality-related
sets are appended with the proposed chirality token and fed
into the chirality transformer encoders TC(·, θTC

). In both of
the transformer blocks, the class token and the chirality token
would interact with the corresponding embedding patches
through self attention and capture the important relations in
between. To discover the distinguishing features of facial
expressions, the class tokens of the image pair aim to learn
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the identical emotion-related features. On the other hand,
we rely on the proposed chirality tokens to disentangle the
non-identical features of the image pair from the original
embeddings since they are considered as noise and would
harm the robustness of the FER. Finally, the emotion classifier
E(·, θE) takes the learned class tokens as input to predict the
emotion of the image pair and the chirality tokens would be
fed into the chirality classifier to distinguish the image from its
reflection. The overall architecture of our approach is shown
in Fig 2 and more details are explained as follows.

B. CNN Feature Extraction

In previous works [31], experiments have shown that using
raw image patches as transformer input takes a large amount
of training data and time to converge as it has less inductive
bias on small datasets than CNN. Therefore, instead of using
raw image patches, we first apply a CNN feature extractor
F (·, θF ) to capture both the global and local spatial informa-
tion efficiently and generate the high-level latent embeddings
Z = F (X; θF ) of the image. The latent embeddings are then
reshaped by an 1 × 1 convolution layer and sliced along the
channel dimension into small patches, which can be further
separated into two sets since we suppose the CNN extracted
features should consist of two branches that are emotion-
specific and chirality-specific, respectively. The features of the
image pair are processed by a share-weights CNN model and
separated in the same way for further feature disentanglement.

C. Transformer Feature Disentanglement

In addition to decoupling through feature separation, we
further employ transformer encoders to accomplish efficient
feature disentanglement. A transformer encoder is composed
of Multi-head Self Attention layers (MSA) and Multi Layer
Perceptron (MLP). It takes the input as a series of N patch
tokens. Typically, a learnable class token would be appended
to the series of input tokens for classification and standard
learnable 1D position embeddings are added to inject position
information.

After feature separation, the chirality-related patches would
contain the perturbation noise information in the input pair
due to facial chirality and thus should be wiped out. On the
other hand, the emotion-related patches the input pair share
are considered as the key to FER and thus can be utilized
for effective classification. The emotion-related patches are
appended with the class token to capture the decisive infor-
mation for emotion classification. Since the reflection and the
image share the same emotional state, the optimization goal
of the transformer is to make the class token of the image
and its reflection as similar as possible. On the other hand,
we propose a new token, the chirality token, to interact with
the chirality-related patches and enhance the robustness of the
class token. The chirality token aims to learn the features the
input pair is different from each other, identify the emotion-
invariant features, and further decouple such noise for the class
token to only learn from crucial features. Therefore, the target
objective of a chirality token is to discriminate the reflection
from the original image.

Next, emotion-related patches with the class token would
be processed by the emotion transformer encoder TE(·, θTE

).
The MSA layer of the transformer allows the class token
to interact with the emotion-related embedding patches and
learn the features that the input pair are identical for further
emotion classification. Likewise, the chirality token interacts
with other patches through self attention mechanism similarly
in the chirality transformer encoder TC(·, θTC

) and aims to
discover the chirality-related features that are non-identical for
the input pair. As the output of the two transformer encoders,
the class token and the chirality token can thus be viewed
as the two disentangled features. During training, the model
is encouraged to learn the expression-related information and
the chirality-related information separately through the two
tokens. The optimization goal is to minimize the distance
between the class tokens and maximize the distance between
chirality tokens of an image pair:

argmin
θF ,θTch,θTcl

‖(TNo,cl−TNr,cl)‖−‖(TNo,ch−TNr,ch)‖. (1)

Specifically, since the input patches are initially extracted
using a CNN backbone instead of raw images and the features
are separated along the channel dimension, both the class
token and the chirality token can be learned from high-level
feature maps with global information instead of partial raw im-
ages patches after feature separation. Moreover, the proposed
feature disentanglement approach allows the class token to
identify the crucial features more efficiently as the emotion-
invariant features are simultaneously learned and eliminated
with the addition chirality token. In our experiment, we notice
that using the chirality token can achieve better performance
with a smaller model size compared to other state-of-the-
art FER models based on transformer, which manifests the
effectiveness and efficiency of our proposed model.

D. Reflection and Expression Classification

After being processed, the two tokens are then fed into two
different branches for classification. The expression classifier
E(·, θE) takes the class tokens that contain the shared informa-
tion of the image pair as input and predicts the corresponding
expression. On the other hand, for more robust chirality-
related feature learning, another classifier C(·, θC) is applied
to distinguish the reflection images from the original ones,
enforcing the model to separate the subspace where the image
and its reflection are far from each other.

E. Loss Function

The learning objective of the proposed model is to separate
the latent features of an emotional image into emotion-related
set and chirality-related set. For the latent feature space to be
properly separated, we utilize four objective functions to guide
our feature disentanglement model during training.

For the expression-related subspace, since FER can be
considered as a classification problem, a cross-entropy loss
LCE between the ground truth expression label Y , and the two
class tokens processed by the emotion transformer encoder,



5

TE(TNo,cl; θTE
) and TE(TNr,cl; θTE

), are included for the
classification:

LCE =CE(E(TE(TNo,cl; θTE
); θE), Y )+

CE(E(TE(TNr,cl; θTE
); θE), Y ),

(2)

.
Given our goal of FER, the learned class token of the image

pair should be identical since they have the same expression
label. In contrast, the chirality token is designed to capture the
information that the image pair are different from each other,
so the chirality token of the image pair should be far distanced
in the latent space to distinguish the reflection from the input
image. Similar to contrastive learning [41], here we take the
two class tokens of the input pair as the positive sample and the
chirality tokens as the negative sample to obtain the contrastive
loss:

LCON =d(TE(TNo,cl; θTE
), TE(TNr,cl; θTE

))+

max(0,m− d(TC(TNo,ch; θTC
), TC(TNr,ch; θTC

))),
(3)

where m is the distance margin and d represents the Euclidean
distance of the two tokens in the latent space. Training with
the contrastive loss, the chirality tokens are optimized to be
pulled away from each other to learn the emotion-invariant
features while the class tokens are guided to be close to each
other as they aim to extract chirality-invariant features that are
identical for both image and its reflection.

Additionally, to ensure that chirality tokens can eliminate
the noise for the class tokens rather than causing infor-
mation loss, a binary cross entropy loss LBCE on both
TC(TNo,ch; θTC

) and TC(TNr,ch; θTC
) are used during train-

ing to constraint the binary classification learning of images
and their reflections. The combined BCE loss can be written
as:

LBCE =BCE(C(TC(TNo,ch; θTC
); θc), Yo)

+BCE(C(TC(TNr,ch; θTC
); θc), Yr),

(4)

and Yo, Yr are the labels for original images and their
reflections.

The overall objective can be written as:

min
θen,θc,θe

LCE + λ1LCON + λ2LBCE , (5)

where the λ1 and λ2 are the weights for different objective
terms.

IV. EXPERIMENT

A. Datasets

To evaluate the robustness and effectiveness of the proposed
method, we focus on large-scale, in-the-wild problems since
controlled datasets are limited and may not be directly ap-
plicable to real-world scenarios. Experiments are conducted
on two in-the-wild datasets, along with subsets of occlusion
and pose variation. RAF-DB contains 12,271 training samples
and 3,068 testing samples in the single-label subset, including
seven classes of basic emotions (surprise, fear, disgust, hap-
piness, sadness, anger and neutral). Affectnet is one of the
largest existing facial expression dataset. Since the labels of

TABLE I
ACCURACY COMPARISON OF EACH COMPONENT BEFORE THE

EXPRESSION CLASSIFIER IN OUR MODEL.

Method RAF-DB AffectNet
CNN 0.8792 0.6137
CNN-FS 0.8801 0.6326
CNN-Trans 0.8921 0.6508
CNN-Trans-FS 0.8810 0.6417
CNN-FS-Trans 0.9120 0.6640

its testing data are not released, we follow the settings in [42]
to use 280000 images for training and 3500 validation images
(500 images per category) with seven emotion categories as
in RAF-DB for testing.

In addition, we examine our model based on the subsets
of the RAF-DB and Affectnet collected in [43] to compare
its performance to that of other FER approaches under the
perturbation of real-world noise, such as occlusions and pose
variations. The manually selected images from the validation
set of AffectNet and the test set of RAF-DB form the subsets
of Occlusion-AffectNet, Pose-45-AffectNet, Occlusion-RAF-
DB, Pose-30-RAF-DB and Pose-45-RAF-DB. Specifically, the
Pose-45-Affectnet and Pose-45-RAF-DB contain faces with
an angle larger than 45◦ while the Pose-30-RAF-DB contains
faces with an angle larger than 30◦.

B. Implementation Details

In our experiments, an IR-50 model [44] pretrained on ms-
celeb-1M dataset [45] is used as the CNN feature extractor.
For feature disentanglement, both the chirlaity and emotion
transformer encoders are composed of 4 identical layers with 8
attention heads. The classifiers are implemented using stacked
fully-connected layers for both chirality and expression, re-
spectively. For RAF-DB, we train our model for 30 epochs
using SGD optimizer with a learning rate of 1e-3 initially and
then decayed by a factor of 10 at epoch 15. For Affectnet,
due to the large amount of samples, we train our model for
3 epochs using SGD optimizer with a learning rate of 1e-3
initially and then decayed by a factor of 10 at epoch 2.

C. Component Analysis

We conduct experiments to analyze the feature learning
effectiveness of each component before the classifier in our
model in Table I. CNN means using CNN feature extractor
only. CNN-Trans means applying a transformer encoder to
process the CNN output without feature separation and the
proposed chirality token. CNN-Trans-FS stands for performing
feature separation on the class token after processed by the
transformer without the chirality token for feature disentan-
glement while CNN-FS-Trans is the proposed method.

From the table some observation can be found: (1) Using
single CNN feature extractor with feature separation for fea-
ture disentanglement also helps the model learn the useful
features for better emotion classification. This result proves
that the feature learning strategy of decoupling emotion-
related features from chirality-related features can combined
with other feature extraction methods and enhance model
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Fig. 3. The rollout attention maps of different emotions. The first row is the original image. Heatmaps of the emotion-variant features learned in the class
token are in the second row while emotion-invariant features learned in the chirality token are presented in the third row.

TABLE II
ABLATION STUDY ON DIFFERENT LOSS TERMS OF OUR METHOD.

LC LCON LBCE
Accuracy

RAF-DB Affectnet
V - - 0.8967 0.6434
V V - 0.9038 0.6527
V - V 0.9035 0.6532
V V V 0.9120 0.6640

performances generally. (2) To eliminate the chirality bias, one
of the possible approaches is to perform feature separation on
the class token after patches are processed by the transformer
encoder and optimize the model to learn the features separately
through the disentanglement components of loss. Although
the transformer encoder’s self attention layers allow the class
token to interact with every patch through learned attention
weights, we argue that it is incompatible for the learned
class token to obtain both emotion-related and chirality-related
features for disentanglement with the same set of attention
weights because the two features are mutually exclusive.
Therefore, the model could not learn them separately, resulting
in performance drop as shown in Table I. In contrast, in our
approach we perform feature separation before the features
are processed by the transformer encoder. With the proposed
chirality token, the chirality-related features can be learned
independently and be eliminated from the emotion-related
features. Therefore, the decisive parts of the features for facial
expression can interact with each other and more efficient
feature learning are perform with a smaller model.

On the other hand, to examine the effectiveness of each term
in the loss function, we compare the individual performance
of the single crossentropy loss, the combination of the cross-
entropy loss with the contrastive loss, the combination of the
cross-entropy loss with the binary-cross-entropy loss, and the
full objective functions. Table II shows the ablation study
results on both RAF-DB and AffectNet datasets. With each
additional loss term the overall accuracy is improved and the
model perform best when all the loss terms are considered.

D. Attention and Visualization

To investigate the effectiveness of our approach, we show
the feature heatmaps of representations learned from the class
token and the chirality token by examining the attention
rollout [46] of the tokens. Fig 3 illustrates the visualization
results. The second row contains the attention maps of the
class tokens learned from different emotions and the third row
contains the emotion-invariant features learned in the chirality
token. Firstly, the features are successfully disentangled as the
two heatmaps of the same image are nearly non-overlapped.
Moreover, we can observe that in the second row, image
regions that are semantically relevant for emotion classification
are obtained effectively in the class token globally. For exam-
ple, the big smiles on the faces in the first two columns are
accurately captured to recognize the face with happiness, while
the model attends to the frowning eyebrows and the stretching
mouths of the sad faces in the third and fourth columns. Even
for the last two columns where the facial images are with no
obvious expressions, the class token could still recognize the
neutral expression with attention on the eye and the mouth
regions. Meanwhile, the chirality tokens aim to decouple the
emotion-irrelevant features for the class token. As shown in the
third row of the figure, it pays more attention to the nose region
and the edge of the images as they provide the least emotion
information and could contain disturbing noise, harming the
robustness of the expression recognition.

We further use t-sne [47] to visualize the features extracted
by the baseline method (without the chirality token and feature
disentanglement), and emotion-related features learned in the
class token of our proposed method in Fig 4. We can observe
that the features learned in our proposed method are more
distinguishable as the intra-class similarity of each emotion
and the inter-class differences are increased compared to the
baseline method. The overall accuracy is then improved for
2%, indicating that our approaches can acquire more effective
features for expression recognition.
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Fig. 4. Visualization of the expression features using t-SNE. Features are
extracted from the RAF-DB database. The figure is best viewed in color.

E. Discussion on Robustness

Robustness to mirror-reflection image We conduct exper-
iments to discuss the impact of facial chirality resulting in
errors in existing FER approaches. To examine the robustness
of several latest FER models towards the bias caused by facial
chirality, we train the models1 including EfficientFace [26],
DACL [48], and TransFER [42] on the training set of both
RAF-DB and AffectNet but test the models with the mirror-
reflection of the testing images. It is noteworthy that as a
common training strategy, random horizontal flipping is per-
formed when training these models to generate more diverse
data samples as a step of data augmentation. Moreover, since
the transformer model applied on FER are not widely explored
currently, we further conduct experiments on two of the latest
proposed transformer architecture, ResT [49] and SwinT [32],

1For EfficientFace and DACL, we use the codes provided by the authors for
training. For TransFER, we reimplement the model using parameters provided
in the original paper.

TABLE III
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

THE MIRROR-REFLECTION IMAGES. RAF-DB-F AND AFFECTNET-F
MEANS THE MODEL IS TESTED ON THE MIRROR-REFLECTION OF IMAGES

IN THE ORIGINAL DATASETS.

Method RAF-DB RAF-DB-f AffectNet AffectNet-f
EfficientFace [26] 0.8835 0.8442 0.6370 0.6040
DACL [21] 0.8778 0.8507 0.6520 0.6152
TransFER [29] 0.9091 0.8979 0.6623 0.6474
ResT [49] 0.8677 0.8673 0.6011 0.5997
SwinT [32] 0.8980 0.8918 0.5953 0.5917
Ours 0.9120 0.9120 0.6640 0.6640

that have achieved great success on several classification tasks
to further evaluate the robustness of our model to chirality bias
with the propose chirality token.

The results in Table III illustrate that for the existing FER
models, the performances will decrease up to 4% in terms
of accuracy when evaluating on the mirror-reflection of the
testing images. It indicates that performing flip augmentation
during training can only increase the diversity of the training
data instead of eliminating the chirality bias for the model.
The fact that an image and its reflection share the same
expression is overlooked by existing models as they could
not capture the decisive emotion features of both original
images their reflections for all the testing samples. Meanwhile,
we observe that transformer architectures are more robust to
images with horizontal flipping as ResT and SwinT only suffer
from a slight performance drop. This could be attributed to the
fact that, since the transformer-based models process image
patches independently and learn the token representation, the
noise induced by face asymmetric may be lessened. Our
model, on the other hand, takes both image and its reflection
as input and so the performance would not be affected by
the chirality bias. In addition to robustness, the effectiveness
of our model is proved as we achieve the highest accuracy
whether the testing images are flipped or not.
Robustness to pose and occlusion Since common noise exists
in real-world scenarios, the robustness to occlusion and pose
variation are very important when evaluating the quality of
expression features extraction. We then perform experiments
on datasets with real-world occlusion and pose variation. In
addition to existing FER models focusing on robust feature
learning, we also conduct experiments on the baseline model
and other transformer-based classification approaches [32],
[49] for comparison. Table IV and Table V are the comparison
results in terms of accuracy. The performance of our proposed
method is superior to compared approaches on the five subsets,
proving the strength of our model against different real-world
noises. Specifically, for occlusion-RAF-DB and occlusion-
AffectNet, our model can achieve around 5% of accuracy
increased compared to the existing FER approaches. Even
for extreme pose variation with an angle larger than 45◦, our
model can still hold over 90% accuracy on RAF-DB and over
60% on AffectNet, which outperforms existing approaches by
a large margin. The experiment results illustrate that through
feature disentanglement, our model can learn to eliminate the
emotion-invariant features with the help of the chirality token
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TABLE IV
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

THE RAF-DB OCCLUSION AND POSE VARIATION DATASETS.

Method Occlusion Pose-30 Pose-45
RAN [24] 0.8272 0.8604 0.8520
EfficientFace [26] 0.8324 0.8813 0.8692
TransFER [29] 0.8762 0.9054 0.8889
Baseline 0.8774 0.8934 0.8827
ResT [49] 0.8256 0.8701 0.8728
SwinT [32] 0.8433 0.8933 0.8961
Ours 0.8816 0.9150 0.9086

TABLE V
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

THE AFFECTNET OCCLUSION AND POSE VARIATION DATASETS.

Method Occlusion Pose-45
RAN [24] 0.5900 0.5386
EfficientFace [26] 0.5912 0.5563
TransFER [29] 0.5709 0.5382
Baseline 0.6240 0.6093
ResT [49] 0.6081 0.5597
SwinT [32] 0.5997 0.5417
Ours 0.6453 0.6261

Fig. 5. Rollout visualization of occlusion and pose variation.

and the learned emotion-related features can thus be more
robust to other distortions.

To investigate how our model focus on emotion features
against occlusion and pose variation, the attention rollout
visualization of our model in images with hand occlusion and
head pose variation are presented in Fig 5. Particularly in the
third row of the occlusion example, where half of the faces are
covered by a hand, our model can still capture the uncovered
mouth region as crucial expression features and recognize the
surprise emotion under severe occlusion. Our model is shown
to be able to classify emotions effectively under complex and
challenging scenarios by attending to discriminative regions.

F. Rethinking the impact of face alignment on FER

In the real-world scenario, the variation in face scale would
also cause asymmetry and induces noises that are irrelevant to
facial expressions. A standard pre-processing pipeline of cur-
rent FER frameworks often includes locating a face and several
facial landmarks, then aligning the face image. Traditionally,
face alignment using the coordinates of localized landmarks

TABLE VI
PERFORMANCE COMPARISON AMONG DIFFERENT ALIGNMENT

APPROACHES WITH CHIRALITY MODULE.

Method RAF-DB AffectNet
Baseline+Dlib 0.8035 0.6237

Baseline+OpenCV 0.7542 0.6057
Baseline+MTCNN 0.8299 0.6309

Baseline+RetinaFace 0.8227 0.6254
Baseline+chirality (Ours) 0.9120 0.6640

can substantially enhance the FER performance since it re-
duces the in-plane rotation [50]. However, the effectiveness
of a deliberate face alignment approach contributing to facial
expression recognition remains unknown.

On the other hand, we argue that asymmetry noises induced
by face-scale variation can be better mitigated by our proposed
chirality model compared to deliberate face alignment strate-
gies. In this section, we conduct experiments to investigate the
relation between deliberate face alignment approaches as well
as our approach and their resulting improvements on FER.

Specifically, we have four alignment strategies using the
Deepface library2, i.e., DLIB, OpenCV, MTCNN, RetinaFace,
which are commonly used in FER works. In contrast, we
only use the simple aligned data provided by RAF-DB and
AffectNet. Since different align algorithms may result in dif-
ferent image quality, which affects the accuracy of expression
recognition, in order to eliminate the influence of this factor,
we further computed the face-level quality [51] and image-
level quality [52], as shown in Fig.6. The image-level quality
curve among different align algorithms and original images
show little difference. And the original images have lower
quality than other four alignment images from the perspective
of face-level. However, our proposed chirality module can still
outperform other settings in RAF-DB and AffectNet datasets
as shown in Tab.VI. The reason behind this is that instead
of aligning face images based on landmarks, the FER model
should focus more on facial chirality. In other words, without
a deliberate alignment step, FER can recognize distinctive
features of facial expressions due to our proposed chirality
module.

G. Comparison with the State of the Art

The overall comparison of our model with state-of-the-art
approaches in terms of model size and accuracy are shown
in Table VII. The baseline model is a CNN feature extractor
followed by a transformer encoder without the chirality token
and feature disentanglement. Some observations can be found
in this table: (1) For both RAF-DB and AffectNet, our model
can achieve the best accuracy of 0.9120 and 0.6640, proving
the effectiveness of the proposed method under different real-
world scenarios. Especially, our proposed model can disen-
tangle the features and capture the emotion-related feature
patches. In addition, the multi-head self attention layers in the
transformer encoder introduce two sets of attention weights
for different feature patches contributing to the class and the
chirality token respectively. The class token and the chirality

2https://github.com/serengil/deepface



9

Fig. 6. Comparison of image quality between different alignment strategies
on RAF-DB.

TABLE VII
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART APPROACHES ON

THE RAF-DB AND AFFECTNET DATASET. † MEANS THE RESULTS ARE
OBTAINED FROM THE CONFUSION MATRIX PROVIDED IN THE ORIGINAL

PAPER.

Method # Parameters RAF-DB AffectNet

RAN [24] 11.2M 0.8690 0.5297†

SCN [22] 11.9M 0.8703 -
ICME Chirality [20] 11.3M 0.8735 0.6189
DDA Loss [48] 11.2M - 0.6234
EfficientFace [26] 1.3M 0.8836 0.6370†

DACL [21] 104.1 M 0.8778 0.6520
FDRL [25] 14.4 M 0.8947 -
DMUE [23] 69.9 M 0.8942 -
TransFER [29] 76.7 M 0.9091 0.6623
Baseline 44.7 M 0.8921 0.6508
ResT [49] 30.3 M 0.8980 0.6011
SwinT-B [32] 87.8 M 0.8677 0.5953
Ours 46.2M 0.9120 0.6640

token can then be learned independently and dynamically from
different feature patches, improving the model performance
in terms of accuracy. (2) Compared to TransFER, the other
transformer model with accuracy over 90% on RAF-DB,
our model can obtain better accuracy with a much smaller
number of model parameters with the proposed chirality token.
Similarly, for Affectnet, existing models with accuracy over
65% are all with large model sizes. Our model possesses
almost half of the model size of DACL and TransFER while

the accuracy is the highest among all. These results show the
contribution of the proposed chirality token on effective feature
learning as better accuracy can be achieved with a smaller
model3. Overall, our proposed model can outperform state of
the art approaches in terms of accuracy with a reasonable
model size compared to other approaches with comparable
performances.

V. CONCLUSION

In this paper, we aim to capture the facial expressions in
complex or ambiguous scenarios especially considering facial
chirality. Our proposed feature disentangling approach can be
robust mirror-reflection as well as real-world occlusion and
head pose variation. Our model can learn to be more aware
of the eye and the mouth region, where most expressions
occur, even for non-frontal faces, and further enhance the
overall recognition accuracy. As a result, the proposed method
outperforms state of the art approaches on RAF-DB and
AffectNet datasets and further proves the robustness of the
learned features and the efficiency of our model training. We
hope that our work will attract new researchers to discover the
potential of utilizing facial chirality.

ACKNOWLEDGMENT

This work was supported in part by Ministry of Science and
Technology of Taiwan under the grant numbers: MOST-109-
2223-E-009-002-MY3, MOST-110-2218-E-A49-018, MOST-
111-2634-F-007-002 and MOST-109-2221-E-009-114-MY3.

REFERENCES

[1] H. Zhang, W. Su, J. Yu, and Z. Wang, “Weakly supervised local-global
relation network for facial expression recognition,” in IJCAI, 2020.

[2] L. Lu, L. Tavabi, and M. Soleymani, “Self-supervised learning for facial
action unit recognition through temporal consistency,” in BMVC, 2020.

[3] H.-X. Xie, L. Lo, H.-H. Shuai, and W.-H. Cheng, “AU-assisted graph
attention convolutional network for micro-expression recognition,” in
ACM Multimedia, 2020, pp. 2871–2880.

[4] L. Lo, H.-X. Xie, H.-H. Shuai, and W.-H. Cheng, “MER-GCN: Micro
expression recognition based on relation modeling with graph convolu-
tional network,” in IEEE MIPR, 2020, pp. 1–1.

[5] Z. Li, S. Han, A. S. Khan, J. Cai, Z. Meng, J. O’Reilly, and Y. Tong,
“Pooling map adaptation in convolutional neural network for facial
expression recognition,” in IEEE ICME, 2019.

[6] G. Wen, T. Chang, H. Li, and L. Jiang, “Dynamic objectives learning
for facial expression recognition,” IEEE Transactions on Multimedia,
vol. 22, no. 11, pp. 2914–2925, 2020.

[7] F. Zhang, M. Xu, and C. Xu, “Weakly-supervised facial expression
recognition in the wild with noisy data,” IEEE Transactions on Mul-
timedia, 2021.

[8] S. Xie and H. Hu, “Facial expression recognition using hierarchical fea-
tures with deep comprehensive multipatches aggregation convolutional
neural networks,” IEEE Transactions on Multimedia, vol. 21, no. 1, pp.
211–220, 2018.

[9] S. Lin, M. Bai, F. Liu, L. Shen, and Y. Zhou, “Orthogonalization-
guided feature fusion network for multimodal 2d+ 3d facial expression
recognition,” IEEE Transactions on Multimedia, vol. 23, pp. 1581–1591,
2020.

[10] J. Lou, Y. Wang, C. Nduka, M. Hamedi, I. Mavridou, F.-Y. Wang, and
H. Yu, “Realistic facial expression reconstruction for vr hmd users,”
IEEE Transactions on Multimedia, vol. 22, no. 3, pp. 730–743, 2019.

3Note that although EfficientFace seems to with an extremely small model,
an additional CNN backbone as label distribution generator is required during
training, making the overall model parameters higher than reported in the
table.



10

[11] H.-H. Lu, S.-E. Weng, Y.-F. Yen, H.-H. Shuai, and W.-H. Cheng,
“Face-based voice conversion: Learning the voice behind a face,” in
Proceedings of the 29th ACM International Conference on Multimedia,
2021, pp. 496–505.

[12] H.-X. Xie, L. Lo, H.-H. Shuai, and W.-H. Cheng, “An overview of
facial micro-expression analysis: Data, methodology and challenge,”
IEEE Transactions on Affective Computing, 2022.

[13] W.-H. Cheng, S. Song, C.-Y. Chen, S. C. Hidayati, and J. Liu, “Fashion
meets computer vision: A survey,” ACM Computing Surveys (CSUR),
vol. 54, no. 4, pp. 1–41, 2021.

[14] Y. Zhang, W. Dong, B.-G. Hu, and Q. Ji, “Weakly-supervised deep
convolutional neural network learning for facial action unit intensity
estimation,” in IEEE CVPR, 2018.

[15] S. Wu, C. Rupprecht, and A. Vedaldi, “Unsupervised learning of
probably symmetric deformable 3d objects from images in the wild,”
in IEEE CVPR, 2020.

[16] S. Huang, W.-H. Cheng, and R. Cheng, “Single patch based 3d high-
fidelity mask face anti-spoofing,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, 2021, pp. 842–845.

[17] Z. Hu, H. Xie, L. Yu, X. Gao, Z. Shang, and Y. Zhang, “Dynamic-aware
federated learning for face forgery video detection,” ACM Transactions
on Intelligent Systems and Technology, 2022.

[18] J. Li, H. Xie, L. Yu, X. Gao, and Y. Zhang, “Discriminative feature min-
ing based on frequency information and metric learning for face forgery
detection,” IEEE Transactions on Knowledge and Data Engineering,
2021.

[19] W. R. Powell and J. A. Schirillo, “Asymmetrical facial expressions
in portraits and hemispheric laterality: A literature review,” Laterality,
vol. 14, no. 6, pp. 545–572, 2009.

[20] L. Lo, H. X. Xie, H.-H. Shuai, and W.-H. Cheng, “Facial chirality: Using
self-face reflection to learn discriminative features for facial expression
recognition,” in IEEE ICME, 2021, pp. 1–6.

[21] A. H. Farzaneh and X. Qi, “Facial expression recognition in the wild
via deep attentive center loss,” in IEEE WACV, 2021, pp. 2402–2411.

[22] K. Wang, X. Peng, J. Yang, S. Lu, and Y. Qiao, “Suppressing uncertain-
ties for large-scale facial expression recognition,” in IEEE CVPR, June
2020.

[23] J. She, Y. Hu, H. Shi, J. Wang, Q. Shen, and T. Mei, “Dive into
ambiguity: latent distribution mining and pairwise uncertainty estimation
for facial expression recognition,” in IEEE CVPR, 2021, pp. 6248–6257.

[24] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao, “Region attention
networks for pose and occlusion robust facial expression recognition,”
IEEE Transactions on Image Processing, vol. 29, pp. 4057–4069, 2020.

[25] D. Ruan, Y. Yan, S. Lai, Z. Chai, C. Shen, and H. Wang, “Feature
decomposition and reconstruction learning for effective facial expression
recognition,” in IEEE CVPR, 2021, pp. 7660–7669.

[26] Z. Zhao, Q. Liu, and F. Zhou, “Robust lightweight facial expression
recognition network with label distribution training,” in AAAI, vol. 35,
no. 4, 2021, pp. 3510–3519.

[27] J. Sanchez-Riera, K.-L. Hua, Y.-S. Hsiao, T. Lim, S. C. Hidayati, and
W.-H. Cheng, “A comparative study of data fusion for rgb-d based visual
recognition,” Pattern Recognition Letters, vol. 73, pp. 1–6, 2016.

[28] J. Yang, J. Li, L. Li, X. Wang, and X. Gao, “A circular-structured
representation for visual emotion distribution learning,” in IEEE CVPR,
2021, pp. 4237–4246.

[29] F. Xue, Q. Wang, and G. Guo, “Transfer: Learning relation-aware facial
expression representations with transformers,” in IEEE ICCV, 2021, pp.
3601–3610.

[30] F. Ma, B. Sun, and S. Li, “Facial expression recognition with visual
transformers and attentional selective fusion,” IEEE Transactions on
Affective Computing, 2021.

[31] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” in International
Conference on Learning Representations, 2021. [Online]. Available:
https://openreview.net/forum?id=YicbFdNTTy

[32] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in IEEE ICCV, 2021, pp. 10 012–10 022.

[33] C.-W. Yang, T. H. Phung, H.-H. Shuai, and W.-H. Cheng, “Mask or non-
mask? robust face mask detector via triplet-consistency representation
learning,” ACM Transactions on Multimedia Computing, Communica-
tions, and Applications (TOMM), vol. 18, no. 1s, pp. 1–20, 2022.

[34] C.-Y. Chen, L. Lo, P.-J. Huang, H.-H. Shuai, and W.-H. Cheng, “Fash-
ionmirror: Co-attention feature-remapping virtual try-on with sequential

template poses,” in Proceedings of the IEEE/CVF International Confer-
ence on Computer Vision, 2021, pp. 13 809–13 818.

[35] K.-Y. Lung, C.-R. Chang, S.-E. Weng, H.-S. Lin, H.-H. Shuai, and W.-
H. Cheng, “ROSNet: Robust one-stage network for ct lesion detection,”
Pattern Recognition Letters, vol. 144, pp. 82–88, 2021.

[36] P. Barros, N. Churamani, and A. Sciutti, “The FaceChannel: A light-
weight deep neural network for facial expression recognition.” in IEEE
FG, 2020, pp. 652–656.

[37] E. Saber and A. M. Tekalp, “Frontal-view face detection and facial fea-
ture extraction using color, shape and symmetry based cost functions,”
Pattern Recognition Letters, vol. 19, no. 8, pp. 669–680, 1998.

[38] X. Li, G. Hu, J. Zhu, W. Zuo, M. Wang, and L. Zhang, “Learning
symmetry consistent deep cnns for face completion,” IEEE Transactions
on Image Processing, vol. 29, pp. 7641–7655, 2020.

[39] F. S. Abousaleh, T. Lim, W.-H. Cheng, N.-H. Yu, M. A. Hossain, and
M. F. Alhamid, “A novel comparative deep learning framework for facial
age estimation,” EURASIP Journal on Image and Video Processing, vol.
2016, no. 1, p. 47, 2016.

[40] Z. Lin, J. Sun, A. Davis, and N. Snavely, “Visual chirality,” in IEEE
CVPR, 2020, pp. 12 295–12 303.

[41] S. Chopra, R. Hadsell, and Y. LeCun, “Learning a similarity metric
discriminatively, with application to face verification,” in IEEE CVPR,
vol. 1, 2005, pp. 539–546.

[42] F. Xue, Q. Wang, and G. Guo, “Transfer: Learning relation-aware facial
expression representations with transformers,” in IEEE ICCV, October
2021, pp. 3601–3610.

[43] K. Wang, X. Peng, J. Yang, D. Meng, and Y. Qiao, “Region attention
networks for pose and occlusion robust facial expression recognition,”
IEEE Transactions on Image Processing, vol. 29, pp. 4057–4069, 2020.

[44] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive angular
margin loss for deep face recognition,” in IEEE CVPR, 2019, pp. 4690–
4699.

[45] Y. Guo, L. Zhang, Y. Hu, X. He, and J. Gao, “Ms-celeb-1m: A dataset
and benchmark for large-scale face recognition,” in ECCV. Springer,
2016, pp. 87–102.

[46] S. Abnar and W. Zuidema, “Quantifying attention flow in transformers,”
in ACL, 2020.

[47] L. Van der Maaten and G. Hinton, “Visualizing data using t-sne.” Journal
of machine learning research, vol. 9, no. 11, 2008.

[48] A. H. Farzaneh and X. Qi, “Discriminant distribution-agnostic loss for
facial expression recognition in the wild,” in IEEE CVPR Workshops,
2020, pp. 406–407.

[49] Q. Zhang and Y.-B. Yang, “Rest: An efficient transformer for visual
recognition,” in NeurIPS, vol. 34, 2021.

[50] S. Li and W. Deng, “Deep facial expression recognition: A survey,”
IEEE Transactions on Affective Computing, 2020.

[51] P. Terhörst, J. N. Kolf, N. Damer, F. Kirchbuchner, and A. Kuijper,
“SER-FIQ: unsupervised estimation of face image quality based on
stochastic embedding robustness,” in IEEE CVPR, 2020, pp. 5650–5659.

[52] S. Su, Q. Yan, Y. Zhu, C. Zhang, X. Ge, J. Sun, and Y. Zhang,
“Blindly assess image quality in the wild guided by a self-adaptive hyper
network,” in IEEE CVPR, June 2020.

Ling Lo received the B.S. degree from Department
of Electronics Engineering, National Yang Ming
Chiao Tung University (NYCU), Hsinchu, Taiwan,
R.O.C., in 2019, and now she is pursuing a Ph.D de-
gree in Institute of Electronics, NYCU. Her current
research interests include deep learning and com-
puter vision. Recently her work focuses specifically
on facial and micro-expression recognition.



11

Hong-Xia Xie received the B.S. degree in Inter-
net of Things from the Zhengzhou University of
Aeronautics in 2016 and received the M.S. degree
in communication and information systems, Fujian
Normal University, China, in 2019. She is now
pursuing a Ph.D. degree in Institute of of Electronics,
National Yang Ming Chiao Tung Univresity, Taiwan.
Her research interests include emotion recognition
and deep learning.

Hong-Han Shuai received the B.S. degree from
the Department of Electrical Engineering, National
Taiwan University (NTU), Taipei, Taiwan, R.O.C.,
in 2007, the M.S. degree in computer science from
NTU in 2009, and the Ph.D. degree from Graduate
Institute of Communication Engineering, NTU, in
2015. He is now an Associate Professor in NCTU.
His research interests are in the area of multimedia
processing, machine learning, social network analy-
sis, and data mining. His works have appeared in
top-tier conferences such as MM, CVPR, AAAI,

KDD, WWW, ICDM, CIKM and VLDB, and top-tier journals such as TKDE,
TMM, TNNLS and JIOT. Moreover, he has served as the PC member
for international conferences including MM, AAAI, IJCAI, WWW, and the
invited reviewer for journals including TKDE, TMM, JVCI and JIOT.

Wen-Huang Cheng is Distinguished Professor
with the Institute of Electronics, National Yang
Ming Chiao Tung University (NYCU), Hsinchu,
Taiwan. He is also Jointly Appointed Professor with
the Artificial Intelligence and Data Science Pro-
gram, National Chung Hsing University (NCHU),
Taichung, Taiwan. Before joining NYCU, he led
the Multimedia Computing Research Group at the
Research Center for Information Technology Innova-
tion (CITI), Academia Sinica, Taipei, Taiwan, from
2010 to 2018. His current research interests include

multimedia, artificial intelligence, computer vision, and machine learning. He
has actively participated in international events and played important leading
roles in prestigious journals and conferences and professional organizations,
like Associate Editor for IEEE Transactions on Multimedia, General co-chair
for IEEE ICME (2022) and ACM ICMR (2021), Chair for IEEE MSA techni-
cal committee, governing board member for IAPR. He has received numerous
research and service awards, including the Best Paper Award of 2021 IEEE
ICME, the Outstanding Associate Editor Award of IEEE Transactions on
Multimedia, the 2018 MSRA Collaborative Research Award, the 2017 Ta-
Yu Wu Memorial Award from Taiwan’s Ministry of Science and Technology
(the highest national research honor for young Taiwanese researchers under
age 42), the Top 10% Paper Award from the 2015 IEEE MMSP, and the K. T.
Li Young Researcher Award from the ACM Taipei/Taiwan Chapter in 2014.
He is IEEE Distinguished Lecturer, ACM Distinguished Member, IET Fellow
and BCS Fellow.


