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Abstract. Earlier trajectory prediction approaches focus on ways of
capturing sequential structures among pedestrians by using recurrent
networks, which is known to have some limitations in capturing long
sequence structures. To address this limitation, some recent works pro-
posed Transformer-based architectures, which are built with attention
mechanisms. However, these Transformer-based networks are trained
end-to-end without capitalizing on the value of pre-training. In this work,
we propose Social-SSL that captures cross-sequence trajectory structures
via self-supervised pre-training, which plays a crucial role in improv-
ing both data efficiency and generalizability of Transformer networks
for trajectory prediction. Specifically, Social-SSL models the interaction
and motion patterns with three pretext tasks: interaction type predic-
tion, closeness prediction, and masked cross-sequence to sequence pre-
training. Comprehensive experiments show that Social-SSL outperforms
the state-of-the-art methods by at least 12% and 20% on ETH/UCY
and SDD datasets in terms of Average Displacement Error and Final
Displacement Error. 3
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1 Introduction

Human trajectory prediction plays a crucial role in path planning and collision
avoidance for various applications, e.g., autonomous driving and robot naviga-
tion [3,18,30,35,39]. The main challenges of trajectory prediction lie in the com-
plexity of dynamic actions and multi-agent interactions. Early trajectory predic-
tion works employed Kalman filter [11] and model-based methods [8,13,24,42] for
learning dynamic actions of a single agent; Social Force models [8,15] learn to for-
mulate human-like behaviors for goal navigation as classic interaction modeling.
However, these hand-crafted approaches have difficulties dealing with complex
multi-agent interactions in real-world applications.

3 code available at https://github.com/Sigta678/Social-SSL
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Fig. 1. An illustrative example on ZARA1 dataset. We design three pretexts, including
IP (Interaction pretext), CP (Closeness pretext), and MP (Motion pretext). The figure
demonstrates how three pretexts benefit the trajectory prediction. Ours-MP does not
know how to correctly utilize the social representation, since there is not enough un-
derstanding of motion. Ours-IP tends to predict all trajectories pointing towards the
upper left corner, since no interaction pretext guides the understanding of social be-
havior. Ours-CP established an inappropriate relationship between the far agent in the
bottom left and the group of agents in the middle, making their predicted trajectories
closer because no closeness pretext indicates the influence of mutual distance on social
cues. Ours shows the effectiveness of three pretexts to maintain the agent’s motion,
capture the social pattern, and ignore the irrelevant social agents.

Recent trajectory prediction approaches adopt data-driven techniques based
on Recurrent Neural Networks (RNN) [21], with most methods utilizing Long-
Short Term Memory (LSTM) [9] as their base model. Various mechanisms such
as social pooling [1], conditional variational autoencoder [35], attention [2,33,34],
visual semantics [19], and graph neural networks [10,14,17,28,35] are proposed to
model the social interactions between the agents so that the generated trajectory
represents reasonable routes. While RNN can effectively model the trajectory of
an agent as a temporal sequence to capture the dynamic actions of the agent,
it is known to be inefficient in memorizing information from long sequences or
a large amount of spatial cues. Social-STGCNN [25] is one of the works that
moves away from using RNN to represent the spatio-temporal relationship fully
as a Graph Convolutional Network (GCN) [12]. Moreover, with the great success
of Transformers [41], Transformer TF [6] and STAR [43] adopted Transformers
for single-agent and multi-agent trajectory predictions. A new branch of study
includes the joint modeling by considering both spatial and temporal sequence
in one model. The idea is proposed by AgentFormer [44], which utilizes an ex-
tremely long sequence as a complicated cross-sequence to combine all the agent
sequences into one via Transformers.

However, these previous works did not capitalize on the benefit of the pre-
training strategy, which is a key mechanism that contributes to the success of
Transformers in Natural Language Processing. Motivated by the idea of cross-
sequence that can model both spatial and temporal information, we propose
Social-SSL, which is a self-supervised cross-sequence representation learning
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Fig. 2. Illustration of self-supervised cross-sequence representation learning. We pro-
pose to learn the interaction and motion patterns based on Transformer, using self-
labeled social information and the masked section of a cross-sequence to extract rep-
resentation without the complete sequence.

framework based on Transformers. As shown in Figure 2, two social-related
pretext tasks and a motion-related pretext task are proposed. Specifically, in-
teraction type prediction and closeness prediction are designed to capture the
inter-relation between the target agent and each of the social agents. Meanwhile,
masked cross-sequence to sequence pre-training provides the understanding of
intra-relation among the remaining sequence of the target agent. In our study,
combining both the inter- and intra-relation into a cross-sequence representa-
tion is effective for crowded agent scenarios and can reduce the amount of data
needed for fine-tuning. To the best of our knowledge, this is the first work that
proposes the pre-training strategy on a social-related trajectory model.

The core contributions of Social-SSL are highlighted as follow:

– Two social-related pretext tasks for cross-sequence inter-relation learning;
interaction type prediction and closeness prediction that learns the social
interaction patterns between every pair of agents in the scene.

– A motion-related pretext task for cross-sequence intra-relation learning; the
masked cross-sequence to sequence pre-training that learns the motion of a
target agent from the non-masked section of its own sequence, and discover
the inter-relation with its surrounding social agents via the cross-sequence
structure.

– By capitalizing the advantage of self-supervised representation learning, Social-
SSL achieves state-of-the-art results on trajectory prediction task, even when
trained on a small amount of trajectory data. In addition, it can improve
the generalizability of the trajectory prediction task.

2 Related Work

Human trajectories are heavily influenced by the social interaction among agents.
With the rise of deep learning, the quality and the amount of data becomes more
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critical. Based on the importance of data, Social-LSTM [1] is a pioneering work
that models social interaction for trajectory prediction via the concept of social
pooling, which aggregates the hidden states among the nearby agents. Social-
GAN [7] revises the pooling module to capture global information from all agents
in the scene. SoPhie [33] proposes the idea of social attention that introduces
an importance weight for each pair of agents. Different from previous works
that utilize LSTM models, a recent line of studies introduced new ideas, such as
graph attention networks [10, 14], for modelling the social interactions between
pedestrians.

Since Transformer has its ability to handle the long-sequence problem well,
using Transformers to solve the problem on trajectory prediction becomes more
popular. For instance, Transformer TF [6] first introduced the use of Transformer
for single-agent trajectory prediction. Capitalizing on the self-attention advan-
tage of Transformer, STAR [43] introduced a Graph Transformer Network that
models the spatial interaction on a Transformer-based graph convolution mech-
anism and memorizes the embeddings of each pedestrian via a temporal Trans-
former. AgentFormer [44] designed the spatio-temporal Transformer along with
better multi-modal properties, and used all the observable agent sequence in the
scene to conduct a complicated cross-sequence input with end-to-end training.
Unlike previous works, we introduce a novel approach on the spatio-temporal
pre-training strategy under a deterministic setting. This makes better use of
the sequence data by predicting the self-labeled social types and recovering the
masked cross-sequence as the supervision for pre-training. Our studies show that
Social-SSL can reduce the need for a large amount of training data and improve
the generalizability of trajectory prediction task. To the best of our knowledge,
our work is the first to consider trajectory forecasting in the self-supervised man-
ner, introducing brand new tasks to embed the social representation into a basic
Transformer [41] model.

3 Social-SSL

We introduce Social-SSL, a self-supervised cross-sequence representation learn-
ing framework via Transformer, to better capture the interaction and motion em-
beddings from the proposed pretext tasks. Since Transformers are data-hungry,
i.e., require a large amount of training data, by creating the pretext tasks re-
lated to the downstream task whereby labels can be automatically generated,
the data representation can be trained by using a huge amount of additional
self-supervised label, rather than using only the downstream task label itself. In
our study, these prior knowledge of social interaction and motion representations
can be quickly transferred to the trajectory prediction task.

Figure 3 illustrates the architecture of our proposed Social-SSL. Given a
paired sequence of the target agent and a social agent, which we called the
cross-sequence in our work, the model is pre-trained using the cross-sequence
with three pretext tasks to model the feature representations from the aspect of
social interaction and agent’s motion.
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Fig. 3. The pre-training structure of Social-SSL. The input sequence for the encoder
constitutes the masked sequence of the target agent ag and the unmasked sequence of
a social agent as, separated by <SEP>. <CLS> in front of the sequence aggregates
the social representation from ag and as. The red dotted line and the symbol “ ” both
represent <MASK> in the observation sequence of the target agent. The social-related
pretext tasks, i.e., interaction type recognition and closeness prediction, are designed
to learn the social representation from the cross-sequence. The motion-related pretext
task, i.e., the masked cross-sequence to sequence pre-training, aims to learn to recover
the target agent trajectory from its incomplete encoder sequence.

In Social-SSL, we set our Social Encoder and Trajectory Decoder as a simple
Transformer Encoder and Decoder, which is simple yet effective for pre-training
tasks. Since these three pretext tasks are trained simultaneously and share the
same parameters of Social Encoder, the Trajectory Decoder side with the masked
cross-sequence to sequence task, is enforced to consider both intra- and inter-
relations between agents via the target agent’s motion and the influential social
information from the Social Encoder respectively. After training on these pretext
tasks, Social-SSL can model all the observed cross-sequences as spatio-temporal
embeddings and implicitly provide useful social information when predicting the
unknown sequence of future timestamps.

3.1 Preliminary

Problem Definition. Given a set of N agents A = {aj | 1 ≤ j ≤ N, j ∈ N}
over a past time period (1, 2, · · · , t, · · · , tc), where tc is the current timestamp,
the observed positions of agent aj are re-scaled to [0, 1]2 and can be represented
as (p

aj

1 ,p
aj

2 , · · · ,p
aj

t , · · · ), where p
aj

t = (x
aj

t , y
aj

t ) denotes the re-scaled position
of agent aj at time t. Since the model should focus on predicting the relative
coordinates instead of absolute positions, we transform the absolute coordinates
into the relative coordinates. Let δ

aj

t = (δ
aj

x,t, δ
aj

y,t) denote the relative coordinates

of agent aj at time t, which can be calculated by δ
aj

t = p
aj

t − p
aj

t−1.
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In the pre-train phase, the Social Encoder is trained with the pretext tasks
using only the observed trajectory (8 frames) of the training data to create the
self-labeled social information. This setting ensures that our method can avoid
memorizing the sequence information while fine-tuning on the trajectory predic-
tion task. Meanwhile, both the interaction type predictor (fI(.)) and closeness
predictor (fC(.)) adopt a 2-layer MLP, which plays the role of simple decoders.
Input Representation. The self-attention masks in Social Encoder allows the
model to learn the social relationship from two observation sequences in a bidirec-
tional spatio-temporal form. The hidden state corresponding to <CLS> is used
as the aggregate representation of sequences ag and as through self-attention for
interaction type and closeness prediction tasks, denoted by sf . In other words,
the social feature (sf ) output by the Social Encoder at the <CLS> position, is
used as the input by the interaction type predictor and closeness predictor, de-
noted as fI(sf ) and fC(sf ). The State Embeddings, Segment Embeddings, and
Position Embeddings are combined as the encoder input with dimension dmodel

set to 256. The State Embeddings are represented by using a fully connected
layer ψ(.) that projects (x

aj

t , y
aj

t ) into R256. The state definition for <CLS>
is (1,0), <SEP> is (0,1), <MASK> is (0,0). This setting is based on the 2-
dimension structure of the re-scaled position (x

aj

t , y
aj

t ), which is between 0 and
1. Moreover, we use Segment Embeddings to differentiate the embeddings of the
target agent (ag) and its surrounding social agent (as) for the encoder input,
where 0 and 1 represent the target and social agent respectively and are pro-
jected into R256. The Position Embeddings are the same as Transformer [41],
which enforces the sequential structure in the self-attention operations.

3.2 Pretext Task

In this section, we present three pretext tasks for interaction and motion mod-
eling: 1) interaction type prediction, 2) closeness prediction, and 3) masked
cross-sequence to sequence prediction. For interaction type prediction and close-
ness prediction, Social-SSL learns to capture social information from the cross-
sequence self-supervision with the Social Encoder. For masked cross-sequence to
sequence prediction, the Trajectory Decoder of Social-SSL aims to predict the
masked section of the target agent by utilizing the self-sequence and the impor-
tant social relationships captured via Social Encoder. Also, by adding segment
and positional embeddings, the sequence separation of two agents and spatio-
temporal information are better captured from the pretext. In the following, we
introduce the self-labeling mechanism to assign the label automatically for in-
teraction type and closeness.

Task 1: Interaction Type Prediction. The idea of interaction type predic-
tion comes from observing distance fluctuation between two agents, which can be
an analogy to summarize the positive and negative sentiment from documents.
For example, if a comment “good service” on a restaurant with this positive
aspect term happens three times, and a comment “poor service” happens once,
we might have an impression that this restaurant provides “good service”. Based
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on this analogy, we sum up the frequency of both agents getting closer and the
frequency of them leaving away to create two classes of “closing” and “leaving”.
In addition, the class “neutral,” is used to represent cases where two agents are
not apparent whether they are closing or leaving.

Specifically, let I
(ag,as)
t denote the indicator of the sign obtained from the

change in distance between the target and the social agent, ag and as at time t:

I
(ag,as)
t =


+1 if d(p

ag

t ,pas
t )− d(p

ag

t−1,p
as
t−1) > 0,

−1 if d(p
ag

t ,pas
t )− d(p

ag

t−1,p
as
t−1) < 0,

0 otherwise,

(1)

where d(.) is the Euclidean distance function. To track the trend of social re-
lations, we summarize all the indicators within a period r4 and determine the
interaction type between two agents as follows.

y
(ag,as)
inter =


1 (leaving) if

∑
t∈[tc−r,tc]

It > 0,

2 (closing) if
∑

t∈[tc−r,tc]
It < 0,

3 (neutral) otherwise.

(2)

The output of interaction type prediction denoted as ŷ
(ag,as)
inter is obtained by

performing multi-class classification with cross-entropy as the loss function, LI :

LI = −
3∑

i=1

P (y
(ag,as)
inter = i) logP (ŷ

(ag,as)
inter = i). (3)

Task 2: Closeness Prediction. Intuitively, an agent near the target agent has
more influence on the trajectory than an agent who is far away. The closeness
prediction is used to capture this social characteristic. Specifically, we separate
closeness prediction into sparse prediction and dense prediction, which could
better adapt to different scenarios.
Sparse prediction. At any time t ∈ [1, tc], if the distance between target agent
ag and social agent as is smaller than the distance threshold, dth, we assign their
closeness label as 1, otherwise 0:

y
(ag,as)
close =

{
1 (nearby/social) if ∃ d(pag

t ,pas
t ) < dth,

0 (faraway/non− social) otherwise.
(4)

The sparse prediction as shown in Figure 4, denoted as ŷ
(ag,as)
cs , is performed

using binary cross-entropy as the objective function, LCS :

LCS = −
1∑

i=0

P (y
(ag,as)
close = i) logP (ŷ(ag,as)

cs = i). (5)

4 In the experiments, r is set to half of the input length empirically (In Appendix).
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Fig. 4. Details for closeness pretext with sparse and dense prediction settings.

Dense prediction. For dense prediction, we consider the precise distance be-
tween the target agent ag and a social agent as, represented by the distance

difference of the corresponding timestamps, denoted as ŷ
(ag,as)
cdt

in Figure 4. The
objective function LCD for guiding the dense prediction for closeness is formu-
lated using mean square error as:

LCD =
1

tc

tc∑
t=1

(d(p
ag

t ,pas
t ) − ŷ

(ag,as)
cdt

)2. (6)

Finally, LCS and LCD are added together to form the total loss, LC for the
closeness prediction task.
Task 3: Masked Cross-Sequence to Sequence Prediction. The third pre-
text task is created by randomly masking a target agent’s subsequence, and
the model should learn to reconstruct the masked subsequence from the cross-
sequence input. Since the ground truth of the masked subsequence is known
before being masked, the model can be trained in a self-supervised learning
manner. The advantages of this pretext task are three-fold. First, this mecha-
nism enhances the representation of the target agent sequence. Simultaneously
pre-training the Social Encoder and Trajectory Decoder enforces the model to
capture the intra-relation by reconstructing the masked subsequence of the tar-
get agent on the decoder side. Second, the model learns a robust representation
that can handle a sequence with missing parts, which may happen due to occlu-
sion. Third, the model learns to consider not only the intra-relation of the target
trajectory but also the social inter-relation among social agents when predicting
the missing part of a sequence. If the sequence information from the target agent
itself is not sufficient to reconstruct the masked subsequence, the social cues can
provide additional assistance to constrain the reconstructed trajectory.

Specifically, tms and tme are denoted as the start and the end of the randomly
masked subsequence timestamps. We adopt the auto-regressive structure on the
decoder to predict the trajectory during fine-tuning, where the self-attention
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masks are arranged in a left-to-right form [5]. The output of the decoder is

represented as δ̂
aj

i , which denotes the reconstruction of the target sequence on
the masked timestamps. The mean square error is used as the objective function
for the masked cross-sequence to sequence pre-training:

LMSE =
1

N

N∑
j=1

(
1

tme − tms + 1

tme∑
i=tms

(δ
aj

i − δ̂
aj

i )2). (7)

The overall objective function in pre-training phase can then be represented as:

Lpre = LMSE + λILI + λCLC , (8)

where λI and λC are respectively the hyperparameters controlling the impor-
tance of the losses for interaction type prediction and closeness prediction.

It is worth noting that the masked language model is widely-used in NLP,
e.g., BERT [4], MASS [40]. Different from the masked language model that
only considers the context in the target sequence, the proposed Masked Cross-
Sequence to Sequence Prediction also takes the sequence from other agents as
the context. As such, the proposed pretext task helps the model learn the fine-
grained social importance for predicting the masked subsequence.

4 Experiments

4.1 Experimental Setup

Datasets. We perform the comparisons on the benchmark datasets: ETH [31],
UCY [16], and SDD [32]. These datasets are collected from the bird’s eye view
with many human interactions. Specifically, ETH is a small dataset which con-
tains the ETH and HOTEL scenes with less than 4 and 8 pedestrians in each
frame, respectively. UCY is a larger dataset which contains the ZARA1, ZARA2,
and UNIV scenes, with each scene having more than 10 pedestrians. For the
UNIV scene, most frames contains 20 to 40 pedestrians. On the other hand,
SDD is a large-scale dataset containing pedestrians, bicyclists, and vehicles.
Settings. Follow the setting of prior works [7,25], we use leave-one-out training
on ETH and UCY datasets. Different from ETH and UCY, SDD is commonly-
used with the standard train-test split in prior works [29,33]. The experimental
setting on the observable period is 8 frames and the prediction period is 12
frames. In the pre-training phase, we use only the observable period of the train-
ing set to avoid data leakage. When fine-tuning on the trajectory prediction
task, the observable period of the training set remains as the input information,
whereas the future period is used as the groundtruth in computing the MSE loss
for guiding the trajectory prediction.
Metrics. Similar to prior works [2,7], we use Average Displacement Error (ADE)
and Final Displacement Error (FDE) to evaluate the results. ADE reflects the
reaction to abrupt change, while FDE reflects more on the long-term goal.
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4.2 Implementation details

Social-SSL uses 4 layers on both Transformer Encoder and Transformer Decoder,
dmodel = 256, and 16 attention heads. AdamW [22] optimizer is adopted for two
phases; pretext task training and trajectory prediction fine-tuning.
Pretext task training: For each agent in a scene, we generate N − 1 agent
pairs for cross-sequence learning, with the purpose of enlarging the amount of
self-supervision data. We set λI and λC to 1, with the learning rate of 3e-6, for
the first 700 epochs. For the remaining 300 epochs, λI and λC are reduced to
0.01, with the learning rate set to 3e-7.
Fine-tune on trajectory prediction: We fine-tune the weights of the Trajec-
tory Decoder by freezing the Social Encoder, so that the embedded inter- and
intra-relation can be preserved. Meanwhile, we add a Gumbel-Softmax to select
the influential social agent for each target agent. The setting of learning rate is
further discussed in our experimental study.
Inference on trajectory prediction: We perform auto-regressive decoding on
the Trajectory Decoder by choosing the pair of cross-sequence from the result of
Gumbel-Softmax. This produces our deterministic result for each target agent
in the multi-agent scenario. The experiments are implemented using PyTorch on
an RTX 2080 Ti GPU. The average results from 10 runs are reported.

Model Venue ETH HOTEL UNIV ZARA1 ZARA2 AVG

Linear 1.33/2.94 0.39/0.72 0.82/1.59 0.62/1.21 0.77/1.48 0.79/1.59

Social-GAN [7] CVPR’18 1.13/2.21 1.01/2.18 0.60/1.28 0.42/0.91 0.52/1.11 0.74/1.54

STGAT [10] ICCV’19 0.88/1.66 0.56/1.15 0.52/1.13 0.41/0.91 0.31/0.68 0.54/1.11

Transformer TF [6] ICPR’20 1.03/2.10 0.36/0.71 0.53/1.32 0.44/1.00 0.34/0.76 0.54/1.17

STAR [43] ECCV’20 0.76/1.67 0.41/0.95 0.61/1.32 0.48/1.06 0.39/0.85 0.53/1.17

AgentFormer [44] ICCV’21 0.99/1.96 0.37/0.76 0.64/1.34 0.46/1.00 0.38/0.84 0.57/1.18

Social-DPF [38] AAAI’21 0.69/1.35 0.39/0.84 0.61/1.00 0.40/0.89 0.39/0.84 0.50/0.98

Social-SSL-S 0.68/1.27 0.26/0.47 0.55/1.02 0.43/0.85 0.34/0.67 0.45/0.86

Social-SSL-D 0.69/1.34 0.27/0.48 0.53/0.95 0.43/0.84 0.34/0.65 0.45/0.85

Social-SSL 0.69/1.37 0.24/0.44 0.51/0.93 0.42/0.84 0.34/0.67 0.44/0.85

Table 1. Comparison with state-of-the-art methods on ADE/FDE metrics. All the
baselines are evaluated using only 1 sample. A lower ADE/FDE value indicates better
performance. Social-SSL-S and Social-SSL-D indicate the closeness pretext using sparse
and dense settings individually, and the combination of sparse and dense setting is
Social-SSL.

4.3 Quantitative Results

Our proposed Social-SSL captures the deterministic social embeddings based
on the self-supervision of interaction labels. To better transfer the pre-trained
embeddings to the fine-tuning task, the deterministic evaluation is a better way
to measure its performance. Table 1 shows the deterministic results of different
baselines on ETH and UCY datasets. The results demonstrate that Social-SSL
outperforms state-of-the-art methods by at least 12% in terms of ADE and FDE.
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Compared with AgentFormer that uses a more “complicated” cross-sequence
input structure via Transformer, we demonstrate the advantages of using “sim-
ple” cross-sequence with our pre-train strategy. From Table 1, Social-SSL em-
phasizes the potential disadvantage of AgentFormer under low sampling, while
demonstrating the effectiveness of our proposed pretext tasks under determinis-
tic setting with suitable supervision of cross-sequence.

Interestingly, the combination of sparse and dense settings in closeness pre-
text demonstrates that the social information learned by Social-SSL could better
solve complex social situations with large amount of pedestrians in the scene,
which indicates the improvement on the UNIV dataset. It is also worth noting
that Social-SSL shows significant improvements on the HOTEL dataset, i.e.,
at least 33% and 38% reduction in terms of ADE and FDE. Since HOTEL is
the scene with 90-degree rotation change in trajectory direction, which is not
seen in the other datasets, the performance of Social-SSL in this scenario could
be attributed to the adoption of the self-supervised learning approach, which is
known for its capability in improving generalizability [26,27].

Model Venue Sampling ADE/FDE

SoPhie [33] CVPR’19 20 16.27/29.38

SimAug [20] ECCV’20 20 10.27/19.71

PECNet [23] ECCV’20 20 8.92/15.63

LB-EBM [29] CVPR’21 20 8.87/15.61

SIT [36] AAAI’22 20 8.59/15.27

Social-SSL 1 6.63/12.23
Table 2. State-of-the-art performance comparison on SDD (Evaluated in pixels).

Table 2 shows that the proposed Social-SSL outperforms state-of-the-art
methods by at least 23% and 20% in terms of ADE and FDE on SDD dataset.
Please note that the results of the baselines here are obtained by sampling 20
times and selecting the best prediction since these models are multi-modal. In-
terestingly, although Social-SSL uses only 1 sample, it outperforms all the base-
lines. SDD is a more challenging large-scale dataset containing the complicated
interactions among heterogeneous agents, i.e., pedestrians, bicyclists, and vehi-
cles. The baseline methods learn the interaction patterns from the supervision
of trajectory prediction, which is an indirect way to model and capture social
interaction among heterogeneous agents. In contrast, our pre-train strategy is
able to capture not only the interaction among the pedestrians but also the so-
cial interaction across different types of agents from a large dataset, leading to
better performance. This result exemplifies the advantage of pre-training.
Small amount data training. Table 3 compares the performance of different
methods trained on 10% and 100% data of the five datasets. We chose Social-
STGCNN and SGCN as baseline comparisons because these methods claimed
data efficiency on fewer amounts of data. On 10% data setting, Social-SSL out-
performs Social-STGCNN and SGCN by at least 51% and 32% in terms of ADE
and FDE. Also, the performance of Social-SSL using only 10% data is compara-
ble to SGCN, demonstrating the effectiveness of our pre-train strategy.
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Method Data amount ETH HOTEL UNIV ZARA1 ZARA2 AVG

Social-STGCNN [25]
10% 2.01/3.08 1.90/3.08 1.30/2.04 1.15/1.85 1.06/1.68 1.48/2.35
100% 0.92/1.81 0.76/1.49 0.63/1.26 0.52/1.06 0.44/0.90 0.65/1.30

SGCN [37]
10% 1.33/2.63 0.90/1.69 0.81/1.53 0.69/1.27 0.66/1.23 0.88/1.67
100% 0.86/1.76 0.57/1.12 0.61/1.23 0.49/1.01 0.36/0.75 0.58/1.17

Social-SSL
10% 0.85/1.75 0.46/0.85 0.68/1.25 0.50/0.96 0.41/0.77 0.59/1.14
100% 0.69/1.37 0.24/0.44 0.51/0.93 0.42/0.84 0.34/0.67 0.44/0.85

Table 3. Comparison on a small amount of data training. We use the same amount of
data for pre-training and fine-tuning with leave-one-out setting.

4.4 Qualitative Results

Amount of data for fine-tuning. Figure 5 demonstrates the advantage of our
pre-training strategy. Using 100% of data for fine-tuning takes more time, and
does not seem to perform better than using 1% of data after the learning rate
decays. Interestingly, with only 1% data used for fine-tuning, the training can
easily converge and reach good enough performance within a few epochs. This
could be attributed to the effectiveness of the masked cross-sequence to sequence
pre-training task. Since we pre-trained the Trajectory Decoder in a way that is
closely related to the trajectory prediction task, the pre-train model itself can
rapidly transfer the knowledge to downstream tasks with simple hints.

Fig. 5. Evaluation results using different amounts of data to fine-tune on HOTEL
dataset. We set the initial learning rate as 3e-6 and the decay rate by 0.1 for every 50
epochs to better observe the convergence phenomenon. Please refer to Appendix for
more evaluation details on other datasets.

Multiple Social Interactions. Two agents in the middle of Figure 6(a) shows
that Social-STGCNN predicts one agent moves faster than the other. In contrast,
Social-SSL is able to preserve the intra- and inter-relationship by embedding the
“neutral” interaction type and cross-sequence to sequence representation, which
maintains a better speed and distance between these two agents. For the agent
at the upper left, Social-STGCNN predicts the agent moving towards the direc-
tion of the two agents in the middle. In contrast, Social-SSL predicts the leaving
behavior precisely, based on the past trajectory. This shows the effectiveness of
closeness pretext since the agent at the upper left is too far away to interact
with the agents in the middle.
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(a) Multiple social interactions (b) Multiple group behaviors

Fig. 6. Visualization of results on ZARA1 and ZARA2 datasets. The endpoint of the
arrow signifies the predicted final destination. In Figure 6(b), we mark the start-point
and end-point for each group with different colors and take off the background scene
information for better observations. For simplicity, we only compare one baseline at a
time. Please refer to Appendix for more visualization cases.

Multiple Group Behaviors. Figure 6(b) compares the performance of STGAT
and Social-SSL in a multi-group case. It can be observed that STGAT can cap-
ture the social interactions within a group precisely, e.g., parallel walking. How-
ever, there is still a performance gap between STGAT and our method. Specif-
ically, STGAT regards each agent as a node and models their relationship as
a complete graph, making it hard to control the trajectory of each agent in a
complex social situation with multiple group behaviors. As observed, behavior
of one group might affect the behaviors of other groups that are not close, lead-
ing to inferior performance. In contrast, Social-SSL predicts the target agent’s
trajectory via the most effective social agent and can thus aggregate their in-
teraction into independent groups. The closeness pretext in Social-SSL ensures
that agents who are too far away to interact, will not be considered, making
each group’s behavior independent of other groups.

4.5 Ablation Study

To further evaluate the contribution of each pretext task, we compare the perfor-
mance of Social-SSL trained on different combinations of pretext tasks in Table
4. Ours-NPS is the baseline that uses the “plain” structure of Transformer en-
coder and decoder with an end-to-end training, which is the same as Transformer
TF [6]. However, since a single-agent model does not consider social information,
we extend this structure to cross-sequence without any pre-training (Ours-NPC).
Result shows that the performance of Ours-NPC is worse than Ours-NPS, due
to the complexity of the cross-sequence input structure, causing it unable to
learn the social information directly, without any proper supervision. Moreover,
the performance of purely adding the social-related pretext tasks (Ours-MP) is
close to Ours-NPC. This is because the social-related pretext tasks only teach
the model to understand the relation without asking the model to use the so-
cial context for predicting the trajectory. However, adding social pretext tasks
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and motion-related pretext improves Ours-SP by at least 45% in terms of ADE
and FDE, demonstrating that the motion-related pretext (Ours-SP) plays an
essential role in making social pretext tasks useful on the trajectory prediction
task. Comparing results of the social-related pretexts, Ours-IP and Ours-CP,
the interaction pretext is shown to be more important between the two social
features. As expected, the closeness pretext plays a minor role in distinguishing
which agent to be considered more. Results of Ours-SE and Ours-SP-SE show
that segment embeddings are essential to enable the Trajectory Decoder to dis-
tinguish the target and social agents in the cross-sequence of the Social Encoder.

Description Mask Interaction Closeness Segment Embedding ADE/FDE

Ours-NPS Single-agent baseline without pre-training V 16.88/31.50

Ours-NPC Cross-agent baseline without pre-training V 26.46/48.45

Ours-MP Social-SSL without motion-related pretext V V V 26.81/46.72

Ours-SP Social-SSL without social-related pretext V V 11.96/22.36

Ours-SP-SE Ours-SP without segment embeddings V 17.65/31.62

Ours-IP Social-SSL without interaction pretext V V V 11.27/20.94

Ours-CP Social-SSL without closeness pretext V V V 7.64/14.27

Ours-SE Social-SSL without segment embeddings V V V 9.23/17.75

Ours Social-SSL V V V V 6.63/12.23

Table 4. Ablation study on pretext tasks using SDD dataset (Evaluated in pixels).
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5 Conclusions

This work presents Social-SSL that employed self-supervised cross-sequence learn-
ing based on Transformers, to learn better representations for performing the
downstream multi-agent trajectory prediction task. The pre-training tasks of
Social-SSL enhance the inter- and intra-relationship for cross-sequence represen-
tation. By designing the pretext tasks of interaction type prediction and closeness
prediction, along with masked cross-sequence to sequence pre-training, Social-
SSL can handle the problem of missing values in the target sequence and capture
informative social information from the cross-sequence simultaneously. Quantita-
tive and qualitative experiments show that Social-SSL outperforms state-of-the-
art approaches across the benchmark datasets. Future work includes extending
Social-SSL with multi-modality via architecture modifications and the design of
new pretext tasks.
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