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Abstract— Scene text detection plays an important role on
vision-based robot navigation to many potential landmarks
such as nameplates, information signs, floor button in the
elevators. Recently, scene text detection with segmentation-
based methods has been receiving more and more attention.
The segmentation results can be used to efficiently predict scene
text of various shapes, such as irregular text in most scene
text images. However, two kinds of texts remain unsolved: 1)
tiny and 2) blurry instances. Moreover, the annotations for
tiny/blurry texts are usually ignored during training, while
tiny/blurry texts can still offer visual auxiliaries for robots to
understand the world. Therefore, in this paper, we propose
a new approach to effectively detect both clear and blurry
texts. Specifically, we propose a re-attention module without
increasing the learnable parameters, which first predicts the
region of texts as the candidate region and leverages the same
network to detect the candidate region again for reducing the
required memory. Moreover, to avoid the errors from the first
detection propagating to the re-attended area, we propose a
new fusion module that learns to integrate the results of the re-
attended regions and the first prediction. Experimental results
manifest that the proposed method outperforms state-of-the-art
methods on four challenging datasets.

I. INTRODUCTION

Automatic scene text detection draws a lot of attention due
to the various applications of machine vision systems [24],
[32], [14], such as autonomous robot navigation, visual
SLAM, street address detection, and blind auxiliary. It has
been served as the preprocessing block for Optical Char-
acter Recognition (OCR), which is also important from
the semantic mapping perspective [3]. The main goal of
scene text detection is to localize the bounding box or the
area of each text instance. Early deep learning-based works
use the regression-based methods [17], [27], [36], [37] to
predict the bounding boxes of text instances. For instance,
TextBoxes++ [17] applies quadrilaterals regression that is
able to detect texts with different orientations. Moreover,
DeRPN [36] proposes a dimension decomposition region
proposal network to replace the bounding boxes of RPN with
flexible anchor strings, decoupling width and height.

Although the detection accuracy is high for regular texts,
the performance significantly drops for irregular texts, e.g.,
curved/arbitrary-shaped texts. To deal with the challenging
texts, the segmentation-based methods [1], [15], [16], [18]
have attracted a lot of attention since they are able to describe
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different shapes of texts according to the pixel-wise predic-
tion. For instance, Mask TextSpotter [16] detects arbitrary-
shape text instances based on the instance segmentation
similar to Mask R-CNN. Due to the high post-processing
time cost of transforming the segmentation into a binary
mask, Liao et al. [18] proposes Differentiable Binarization
(DB) and directly inserts DB into the network for jointly
optimizing the segmentation.

Nevertheless, detecting the blurry texts remains a chal-
lenging task. In this paper, we argue that it is beneficial
to consider the blurry texts since the blurry texts are still
important for robot agents to explore the world. For example,
given detected blurry texts, the agents can move forward to
make the texts clear or use super-resolution techniques [22]
for finding the visual auxiliaries. To detect both clear and
blurry scene texts, one naı̈ve method is to directly annotate
more blurry texts for training the models. However, without
a careful design, the detection models are inclined to detect
backgrounds or textures since these areas may be similar
to the blurry texts. Another basic approach is to use multi-
level feature extraction [29], [33]. Nevertheless, it requires a
complicated network for extracting the multi-level features.

To effectively detect the scene texts, we propose a re-
attention mechanism that mimics human learners’ reactions.
That is, when people find the objects are too small/blurry to
be detected, we would look closer. Therefore, the re-attention
mechanism first detects possible regions for text instance as
the candidate region and leverages the same network to detect
the candidate region again. In other words, by enlarging and
cropping the candidate region, the part of the background
is removed and the scene texts become clearer, which can
facilitate the detection even with the same network and thus
reduce the required memory for storing the detection models.

Fig. 1 illustrates an example of the proposed re-attention
mechanism, where the red and blue boxes represent the clear
and blurry texts, respectively. By re-attending the candidate
regions, the proposed method effectively detects the blurry
texts. It is worth noting that previous work of recurrent
attention [4], [6], [21] or object detection based on recurrent
neural networks [23], [35], [39], [40], [41] can be used
to learn where to refocus. However, it requires additional
learnable parameters and is inclined to be unstable during
training according to previous work [4]. After applying the
re-attention, we further propose a fusion module with a new
loss to better integrate the first prediction and the re-attended
prediction for avoiding the error propagation between two
predictions. The contributions are summarized as follows.
• To the best of our knowledge, this is the first work
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Fig. 1: The visualization of blurry ground truth and predic-
tions. (a) is the input image. (b) GT (c) DB [18]. (d) Ours.

considering the blurry and short texts, which are ignored
before. The detection can not only facilitate many
applications but also help the learning model understand
different levels of clarity.

• We propose a novel re-attention approach that does not
require additional parameters and a fusion module that
only slightly increases the number of parameters to
avoid error propagation. Moreover, we propose a new
loss that consider the different text and non-text ratios
in the backbone and the re-attention modules.

• Experimental results show that the proposed approach
outperforms 3 state-of-the-art methods on four pub-
lic datasets. The source codes and pretrained mod-
els are released as a public download for the fu-
ture research at http://basiclab.nctu.edu.
tw/IROS21_STD.zip.

II. RELATED WORK

To correctly detect scene texts, traditional methods, such
as sliding-window-based method [11], [42], and connect-
components based method [2], [10], [25], [31], [28] have
been proposed to obtain the region of interest. With
the advance of deep learning, a recent line of studies
proposes different learning models to detect scene texts,
which can be categorized into regression-based methods
and segmentation-based methods. Regression-based methods
predict the bounding boxes of text instances [17], [27],
[36], while segmentation-based methods [1], [15], [16], [18],
[26] describe different shapes of texts according to the
pixel-wise prediction. Generally, regression-based methods
usually enjoy simple post-processing algorithms (such as
non-maximum suppression), but most of them cannot de-
tect irregular shapes (such as curved shapes) well due to
the limitation of bounding boxes. On the other hand, the
segmentation-based methods are capable of detecting arbi-

trary text instances in scene images. For instance, inspired
by Mask R-CNN, Mask TextSpotter [20] detects scene texts
in a segmentation manner of arbitrary-shape text instances.
Moreover, LOMO [39] localizes the text progressively for
multiple times to reconstruct the irregular text by considering
the geometry properties of text instances. Baek et al. pro-
pose CRAFT [1], which is a weakly-supervised framework
that trains the character-level detector by using an iterative
refinement module. However, none of these previous work
leverages the labels for blurry/short texts. In contrast, our
proposed approach leverages the same network twice to
detect both clear and blurry texts, which improves the perfor-
mance without increasing the required memory. Richardson
et al. [26] propose to create a compact image containing
only the initially-detected text regions and resize the compact
image to a canonical scale and detect again. Nevertheless, the
new results cannot be adaptively integrated with the initial
results while forming a compact image requires more time.

III. METHODOLOGY

A. Overview

Fig. 2 illustrates the proposed architecture, which consists
of three modules: 1) backbone network, which extracts
features from images and detects the regions of texts, 2)
re-attention network, which shares the same parameters with
the backbone network but is fed with the re-attended images
extracted by the re-attention algorithm, and 3) fusion module,
which integrates the results of the first prediction and the re-
attended prediction. In the backbone network, ResNet50 [9]
is leveraged to extract multi-scale feature maps and Bi-
directional Feature Pyramid Network (BiFPN) module is
then used to fuse feature maps of different scales. Afterward,
to predict the scene text region, we adopt the Differentiable
Binarization (DB) module [18] as an important block for the
following re-attention since the threshold of the segmentation
should be optimized with the model. As such, the backbone
network can be reused and generate different thresholds in
a data-driven manner. The re-attention algorithm crops the
image based on the first predition and scales the images
into the original size. Finally, we concatenate the predictions
from the standard segmentation and re-attention modules to
generate the final prediction. After the backbone network
and the re-attention network both generate a probability map
and a binary map, the fusion module takes these four feature
maps as the input and learn to obtain a better result.

B. Backbone Network

The goal of the backbone network is to i) extract features
from images and detect the regions of texts and ii) make
the prediction of the re-attention network different even with
the same parameters. To achieve the first goal, we first
leverage ResNet50 [9] to extract features. Afterward, inspired
by [30], we enhance the extracted features by bidirectional
cross-scale connections and weighted feature fusion modules.
Specifically, ResNet50 generates four different resolution
feature maps P ini , i ∈ 2, . . . , 5 in each residual block,
and outputs four feature maps P outi , i ∈ 2, . . . , 5 with the
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Fig. 2: The pipeline of our proposed model. The gray area is the standard segmentation (backbone network), the green area
is the re-attention module, and the blue are is the fusion module. The weights ResNet50, BiFPN, and DB modules are shared
between the standard segmentation and re-attention module.

same input size.1 We use P in to generate the intermediate
features P td, which are fused from top-down, so that lower-
level features contain more semantic information. Take the
intermediate features of the level 4 in BiFPN as an example:

P td4 = Conv
(
w41
·P in

4 +w42
·Resize(P in

5 )

w41
+w42

+ε

)
where Resize is an up-sampling operation for resolution
matching, Conv is a convolutional operation for feature pro-
cessing, and w41 , w42 are the weights for different features.
Unlike the original work, we use the standard convolution
instead of the depth-wise convolution, and only use one
layer of BiFPN. Moreover, we fuse features from bottom-up
and add skip connections to keep the geometry information
for higher-level features, which can make multi-scale feature
maps more powerful and have more geometric information.
Again, take the output features of the level 4 in BiFPN as
an example:

P out4 = Conv

(
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·P in

4 +w′
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·P td

4 +w′
43
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+w′
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)
where Resize is a down-sampling operation for resolu-
tion matching, Conv is standard convolutional operation,
w′41 , w

′
42 , w

′
43 are the weights for different features. The

output of the BiFPN module fuses the multi-scale features,
so the text instances of different scales can be better detected.

To achieve the second goal, we adopt the Differentiable
Binarization (DB) module [18] since the threshold of the
segmentation should be optimized with the model. Fig. 3
illustrates the process of DB. This detector take P2 to P5
as the input and uses a 3 × 3 convolutional operator and
two deconvolutional operators to transform the features for

1Different from traditional methods, the weights of the features are
learnable parameters instead of addition or concatenation. Moreover, P1
is not used here since the features are too low-level.

Fig. 3: The pipeline of the differential binarization module,
where “Pred” consist of a 3x3 convolutional operator and
two deconvolutional operators.

predicting the probability map (P ) and the adaptive threshold
map (T ). The probability map represents the probability of
each pixel belonging to the text instances. The adaptive
threshold map is used to convert the probability map into
the binary map. The pixel-wise threshold is a customized
threshold for each pixel. The pixels close to the boundary
of the bounding box have a higher threshold than pixels far
away from the boundary. The probability map and threshold
map are used together to approximate the binary map B,
and make the operation differentiable so the threshold can
be determined by an end-to-end training. Let Bi,j denote the
value locating at (i, j) of the binary map. We have

Bi,j =
1

1 + e−k(Pi,j−Ti,j)
, (1)

where k is the amplifying factor, which is set to 50 em-
pirically. In other words, by pixelwisely calculating whether
the probability (Pi,j) is greater than the threshold (Ti,j), we
obtain the binary segmentation as the first prediction of scene
texts.



Fig. 4: The re-attention module can be divided into two parts.
The first part is to generate a cropped image, and the second
part is to pad the output of the re-attention module to the
input image size. “Pred” is to get predictions from the model.
“Coor” represents the operation of obtaining the coordinate
from the area of interest.

C. Re-Attention Module

The scale of the text instances varies in the text detec-
tion task, especially when the text instances are located at
different distances. To detect the blurry/small text instance,
one basic approach is to use a supervised learning with
annotations, e.g., the labels of blurry or small in many scene
text datasets. However, without a careful design, the detec-
tion models are inclined to detect backgrounds or textures
since these areas may be similar to the blurry texts. Another
approach is to use multi-level feature extraction [33], [29]
or recurrent attention [6], [21], [4]. However, it requires
additional parameters or complicated model architectures and
may suffer from unstable training.

In this paper, we mimic the learning process of how human
detect texts, i.e., when we find the object is too small/blurry
to detect, we would look closer. By focusing on the areas
with texts and removing other backgrounds, the blurry/small
text instances will be further detected, even with the same
network. Fig. 4 shows that the binary map from a cropped
image makes the text boundary clearer. Therefore, based on
this observation, we design a re-attention module to deal with
small/blurry text instances and use the re-attended image for
further predictions.

Fig. 4 shows the pipeline to get a cropped image and the
output prediction of the re-attention module. Specifically,
we use the binary map (B) generated from the standard
segmentation to locate the candidate areas, and crop the
input image according to these coordinates.2 The cropped
image is then resized to the size of the input image as
shown in Fig. 4. The resized image is fed into the same
model mentioned above to obtain the results, including the
re-attention probability map (Pz), the re-attention threshold
map (Tz), and the re-attention binary map (Bz). The results
of the re-attention module will be resized to the cropped size
and padded to the input size as shown in Fig. 4. In order
to prevent the cropped coordinates from being too close to

2When there are many small text instances scattering over the image, one
simple extension is to cluster the texts according to the coordinates, e.g.,
using DBSCAN [7], and send different clustered regions into the re-attention
network.

the text boundary, we slightly enlarge the boundary regions.
The model weights in the standard segmentation and the
re-attention module branch are shared, which reduces the
required memory during inference time.

D. Fusion Module

In order to prevent the situation that the predictions of
the re-attention module are worse than the predictions of
standard segmentation, we propose the fusion module to
integrate the four predictions, i.e., P , T , Pz and Tz . One
simple fusion method is to learn a weighting vector for
linearly combining four predictions. However, the boundary
may be blurred since the combined values may not be close
to 0 or 1, which deteriorates the performance. In order to
overcome these problems, we use several 1× 1 convolution
kernels to fuse only the corresponding pixels for prediction.
Compared with the pixel-wise integration with the image-
wise integration, pixel-wise integration use different weight-
ing for different regions, which yields a clearer boundary
and removes the unacceptable predictions from re-attention
module.

For the loss of the backbone network, since the number
of text and non-text pixels is extremely imbalance, we
adopt hard example mining to select negative pixels and
apply a weighted binary cross-entropy loss to supervise pixel
classification, i.e.,

Lback =
∑

i∈Sback

yi log xi + (1− yi) log(1− xi), (2)

where Sback is the sample set with the negative-positive ratio
as 3. The loss function of the re-attention module is similar
to Lback, but the sample set Satt is with the negative-positive
ratio as 1 since the text/non-text regions are more balanced
in the re-attention module, i.e.,

Latt =
∑
i∈Satt

yi log xi + (1− yi) log(1− xi). (3)

Finally, the prediction of the fusion module, denoted by
Lfuse, is similar to Lback but with a consistency loss that
keeps the prediction of non-attended regions consistent with
the results from the backbone network, i.e.,

Lfuse =
∑

i∈Sfuse

wi(yi log xi + (1− yi) log(1− xi)), (4)

where wi represents the distance between the backbone
network and the fusion module. The total loss function,
denoted by Ltotal, can be regarded as the weighted sum of
the losses for the backbone network (Lback), the re-attention
network (Latt), and the fusion module (Lfuse), i.e.,

Ltotal = Lback + λ1 Latt + λ2 Lfuse, (5)

where λ1 and λ2 are the hyperparameters controlling the
importance of the three parts.



IV. EXPERIMENTS

In this section, we pre-train all the models on SynthText
dataset [8], and evaluate our method on 4 public datasets,
ICDAR 2015 dataset (IC15) [12], MSRA-TD500 dataset
(TD500) [38], CTW1500 dataset (CT15) [19], and Total-Text
dataset [5]. Moreover, we compare the proposed approach
with several state-of-art methods with open source codes,
DB [18], PSENet [15] and ContourNet [34].

A. Datasets

Training text detection models usually pre-train the models
by synthetic datasets. Following the setting, we introduce
a synthetic dataset that is commonly-used in recent text
detection papers for pre-training all the models, and four
benchmarks for scene text detection consisting of regular
text instances, irregular text instances, and multi-language
text instances to demonstrate our model can handle curved,
distorted, and oriented text. It is worth noting that the blurry
and small texts are annotated in all the datasets but ignored
in previous work (named “DO NOT CARE”). This is because
these datasets are designed for computer vision and do
not consider the scenario that the mobile robots can move
forward if they detect blurry or small texts. The following
descriptions of these datasets are used in our experiments:
• SynthText [8] contains 800,000 images. It has been

widely used in scene text detection tasks because of
the high cost of generating ground truth from real-
world datasets. These images are synthesized from 8k
background images. This dataset is only used to pre-
train our model.

• ICDAR 2015 dataset (IC15) [12] is collected through a
pair of Google Glasses. IC15 was introduced in the IC-
DAR 2015 Robust Reading Competition for incidental
scene text detection. It consists of 1000 training images
and 500 testing images with a resolution of 720 x 1280.
The annotations are at the word level using quadrilateral
boxes.

• MSRA-TD500 dataset (TD500) [38] is a multilingual
dataset that contains 300 training images and 200 testing
images. The images contain English and Chinese. Text
instances are labeled in rectangles with rotation angle.

• CTW1500 dataset (CT15) [19] is a dataset for curved
text detection. It contains 1,000 training images and 500
testing images. The text instances are annotated by a
polygon of 14 vertices.

• Total-Text dataset [5] is a text benchmark containing
the texts with various shapes, including horizontal,
multi-oriented, and curved. There are 1255 training
images and 300 testing images in total, while the text
instances are labeled at the word-level.

B. Implementation details

We train the model in two stages: pre-training on Synth-
Text and fine-tuning on the real-world datasets. Specifically,
in the pre-training stage, we use the ResNet50 pre-trained
on ImageNet [13] as the initial weights and use SynthText
for pre-training the scene text detection. The batch size is

set to 16. All the input images are resized to 640 × 640.
The data augmentation of training data includes random
rotation, random flipping, and random cropping. We use the
same label generation method from [18] which generates the
segmentation maps and the threshold maps. Then, we pre-
train them for 5 epochs with the SGD optimizer with the
initial learning rate as 0.007. Moreover, a customized decay
learning rate is adopted by multiplying (1− iter

max iter )
power,

where power is 0.9 and max iter means the maximum
iterations, depending on the maximum epochs. Gradient
clipping is used with the magnitude of 1. In the fine-tuning
stage, we set the batch size to 8. The ground truth image size
and the label generation are the same as in the pre-training
stage. Finally, we fine-tune the model for 1200 epochs on
the corresponding real-world datasets. The settings are the
same as the pre-training stage.

In the testing phase, we keep the aspect ratio of the test
images and resize the input images by setting a suitable
height for each dataset. We use the single-scale image as
input because the test images of different scales will have a
great impact on performance. We find the hyperparameters
for each dataset via a grid search with 0.05 step on a hold-out
validation set. The whole model is implemented by PyTorch
on GeForce RTX 2080 Ti.

C. Comparisons with State-of-the-Art Methods

We evaluate the proposed method on different datasets
with different state-of-the-art methods. We choose DB [18],
PSENet [15], and ContourNet [34] as the baseline to evaluate
our model since they provide models, codes, and configura-
tion files for reproducing their results. To fairly evaluate the
performance, all the models are trained with annotations of
blurry or small texts. It is worth noting that there are many
papers provided their results on these four public datasets.
However, without the codes, it is difficult to know the results
when considering the blurry texts. In the following tables,
“P”, “R”, and “F” respectively indicate the precision, recall,
and f-measure.

Table I shows the performance of different approaches
on 4 datasets. On average, the proposed approach outper-
forms DB, PSENet, and ContourNet by 4.46%, 13.23%, and
11.86%, respectively. Compared with PSENet and Contour-
Net, DB performs the best since the differential binarization
is important to find a good threshold for both clear and blurry
texts. Moreover, the frames per second (FPS) shows that
the inference speed of the proposed approach is nearly real-
time but greater than DB due to the re-attention mechanism.
However, FPS of the proposed approach is not double the
FPS of DB since the model weights can be reused instead
of reloading them twice. We further analyze the performance
with different characteristics of datasets.
Multi-oriented text detection. IC15 dataset is used to
evaluate the performance on multi-oriented text detection
with small and low-resolution text instances. Table I shows
that the F-measure of DB is only 76.9%, while the pro-
posed approach reaches 80.9%, showing that the proposed
re-attention module and fusion module are effective. The



TABLE I: The evaluation on the real world dataset with blurry and small texts.

Model IC15 TD500 CTW1500 Total-Text Average
P R F P R F P R F P R F P R F FPS

DB 79.3 74.6 76.9 89.0 81.4 84.5 81.0 69.3 74.7 86.1 77.4 82.1 83.8 75.4 79.5 38.4
PSENet 72.3 81.3 76.9 61.8 74.1 67.4 83.6 68.2 75.1 81.0 67.4 73.6 74.7 72.8 73.3 4.56

ContourNet 75.4 81.8 78.5 60.7 62.0 61.3 76.3 77.7 77.2 81.9 77.8 79.8 73.8 74.8 74.2 4.83
ours 82.7 79.2 80.9 92.8 84.2 88.3 83.0 76.0 79.3 86.1 80.7 83.3 86.1 80.0 83.0 29.3

(a) GT (b) DB (c) Ours

Fig. 5: Comparative results with DB on ICDAR2015 datasets.

TABLE II: The design of the fusion module.

Method channels bias P R F
1x1 4-1 - - - -
1x1 4-1

√
94.3 71.5 81.3

1x1 4-32-1 - 92.8 84.2 88.3

qualitative results comparing to DB are shown in Fig. 5,
where the text instances are correctly detected by our model.
Curved text detection. CTW1500 and Total-text datasets are
used to evaluate the performance of curved texts. ContourNet
is the state-of-the-art methods on these two datasets. With
the suppression of the false positives by only outputting
predictions with a high response value in both orthogonal di-
rections, ContourNet better describes the text regions. How-
ever, when considering the blurry/small texts, the proposed
approach still outperforms ContourNet. Moreover, Fig. 6
shows that the curve text instances with artistic fonts can
be detected in our method but are ignored by DB.
Multilingual text detection. TD500 dataset is a multilingual
text detection. As shown in Tab. I, the proposed model
also achieves state-of-the-art performance, which shows the
generalizability of detecting scene texts. The performance
considering the blurry text is 88.3%, which is better than
other baselines. We observe that the text instances are
shown together instead of being scattered on other datasets.
The grouped text instances allow the proposed re-attention
module to crop the area of interest more efficiently, which
ignores the distracting background. As shown in Fig. 7, the
multilingual text can be detected correctly by our method. In
contrast, without using the re-attention module to eliminate
the distracting background, DB detects the background of
the signboard as texts since the texture behind is relatively
similar to texts as compared with the ceiling.

D. Ablation study

We conduct ablation studies on TD500 dataset to show
the performance improvement of different modules. All the
models are trained and tested using the blurry text instances.

TABLE III: The input of the fusion module.

P B Patt Batt P R F√
-

√
- 89.3 85.6 87.4

-
√

-
√

88.1 78.7 83.1√ √ √ √
92.8 84.2 88.3

TABLE IV: The performance of five predictions.

method P R F
Probability Map P 91.3 83.2 87.1

Binary Map B 76.7 86.0 81.0
Re-attention Probability Map Patt 89.4 78.0 83.3

Re-attention Binary Map Batt 67.1 82.0 73.8
Fusion Map 92.8 84.2 88.3

Fusion Module. There are several alternatives of the fusion
module in Table II, where “Method” means different kinds of
convolutional kernels. “(numbers)-(numbers)” indicates the
input and output channels. For example, “4-32-1” indicates
two convolutions with input channels 4, and output channels
32 and 1. “Bias” indicates whether to add learnable bias to
the output. The first row in the table does not produce results
since the model cannot effectively express the mixed results
without bias. The best fusion module is designed as two
1×1 convolution and the corresponding output channels are
32 and 1. There are four predictions from the standard seg-
mentation (backbone network) and the re-attention module.
Table III shows the choice of the input features, where “

√
”

marks the usage of different combinations of the probability
map P , binary map B, re-attention probability map Patt, and
re-attention binary map Batt. We choose 1) both probability
maps, 2) both binary maps, and 3) four maps, as the input
of the fusion module. The experiment shows that the fusion
module with all of the predictions can obtain the best result
in 88.3% on TD500 dataset.
Different Prediction Results. When the proposed model
converges, Probability Map, Binary Map B, Re-Attention
Probability Map Patt, Re-Attention Binary Map Batt and
Fusion Map can all be regarded as the final result. As



(a) GT (b) DB (c) Ours

Fig. 6: Comparative results with DB on Total-text datasets.

(a) GT (b) DB (c) Ours

Fig. 7: Comparative results with DB on TD500 datasets.

TABLE V: The performance of different hyperparameters.

λ1 λ2 P R F
1 1 92.8 84.2 88.3
1 1.5 89.8 83 86.2

1.5 1 92.4 81.6 86.7
0.67 0.67 91.1 84 87.4

1 0.67 90.1 82.8 86.3
0.67 1 90.5 83.2 86.7
1.5 1.5 91.1 83 86.9

shown in Tab. IV, we can see that fusion module improves
the performance to 88.3%, while the predictions from re-
attention module are worse than standard segmentation,
which indicates that the fusion module is necessary for
avoiding the error propagation and predicting a better results.
The fusion map shows the best result, and thus we use fusion
map as the output of the proposed model.
Hyperparameters. In the proposed model, the total loss
Ltotal is the weighted sum of the losses of the backbone
network (Lback), re-attention network (Latt), and fusion
module (Lfuse). Table V shows the performance of different
weightings in terms of F1-score. The results indicate that
the three branches are of the same importance since λ1 = 1
and λ2 = 1 yield the best performance. Moreover, when the
importance of Lback and Latt are set to be the same, λ2
cannot be too large (1.5) or too small (0.67), which yields
the worst performance.

V. CONCLUSION

In this paper, a novel scene text detection framework
is proposed to improve the performance by looking closer

and ignoring background interference. Our method has two
new design modules, re-attention and fusion modules, which
effectively deal with both clear and blurry texts instance.
Experiments show that the proposed approach outperforms
state-of-the-art methods. In the future, as the scene text
detection and text recognition are close tasks, we plan to
formulate a multi-task learning problem to tackle these
two problems together. Moreover, we plan to explore the
possibility of extending the idea of “re-attention” to other
related tasks such as 3D object detection.
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