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A recent line of research focuses on crowd density estimation from RGB images due to a variety of applications, e.g., surveillance,
traffic flow control. However, the performance drops dramatically for low-quality images, such as occlusion, or poor light conditions.
On the other hand, people are equipped with various wireless devices, allowing the received signals to be easily-collected at the base
station. As such, another line of research utilizes received signals for crowd counting. Nevertheless, received signals only offer the
information of the number of people, while the accurate density map cannot be derived. As UAVs are now treated as flying base
stations and equipped with cameras, we make the first attempt to leverage both RGB images and received signals for crowd density
estimation on UAVs. Specifically, we propose a novel network to effectively fuse the RGB images and RSS information. Moreover, we
design a new loss function that considers the uncertainty from RSS and makes the prediction consistent with the received signals.
Experimental results manifest that the proposed method successfully helps break the limit of traditional crowd density estimation
methods and achieves state-of-the-art performance. The proposed dataset is also released as a public download for future research.
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1 INTRODUCTION

5G network aims to provide a communication service with higher data rate, ultra-low latency, and massive user
capacity [1]. However, the widely-used fixed base stations (BSs) cannot effectively facilitate on-demand coverage or
adapt to the dynamic environments, especially for crowded scenes or complex terrains [49]. One of the promising
solutions is to deploy unmanned aerial vehicles (UAVs) as flying BSs to provide line-of-sight (LoS) connections for
ground user equipments (UE) due to their characteristics in terms of low-cost, high-agility and easy-to-deploy, which
can augment the coverage and capacity of existing cellular networks [23, 55]. To precisely allocate UAVs for enhancing
the communication services, an accurate crowd density map is required to identify the communication demand of each
area. One simple approach is to make use of previous works that utilize the received signal strength (RSS) to count the
crowd [10, 37, 42]. Nevertheless, the crowd estimation from RSS only provides the clue for people counting while the
crowd density map cannot be obtained since two signals with same strength can be transmitted from any directions.

On the other hand, with the advance of deep learning technology, a recent line of research studies the problem
of crowd density estimation from RGB images [7, 8, 17, 25, 30, 47, 51], which can facilitate a variety of applications,
e.g., activity surveillance, traffic arrangement, security facilities planning. For example, Li et al. [26] propose CSRNet
by using the 2D dilated convolutional layer to capture the multi-scale features without significantly increasing the
parameters. Moreover, Dai et al. [29] propose the Dense Dilated Convolution Block (DDCB) to consider the continuously
varied scale features. Since flying BSs are usually equipped with cameras, it is promising to combine the crowd density
estimation from RGB images and crowd counting from RSS to improve the performance of crowd density estimation. In
fact, RGB images and RSS are complementary to each other since i) RSS only provides the information of the distance
between UEs and flying BSs but does not contain the information about directions, while RGB images provide the
estimation of the crowd density map, and ii) people who are occluded by objects, e.g., trees, cars, cannot be observed
from RGB images, while received signals still contain the information of occluded people.

Therefore, in this paper, we make the first attempt to integrate the information from RGB images and received signals.
However, several challenges arise for integrating RGB images and RSS. 1) Unavailability of labeled datasets. To learn
how to estimate the density map from both the RSS and RGB data, one of the challenges is to find a suitable dataset.
Even though various existing sources provide image data for crowd counting, the unavailability of corresponding signal
data is the primary problem. 2) Data heterogeneity. Aerial images and RSS are with different dimensions (2D vs. 1D) and
contain heterogeneous information. As such, it is difficult to directly train the model in an end-to-end manner. How
to effectively combine the two kinds of information so that one can benefit from the other requires a careful design.
3) Different receptive fields between RSS and RGB. Even when the RGB and RSS data are transformed to represent the
density map, the receptive fields of cameras and transmitted signals are not perfectly matched (rectangle vs. round).
Therefore, it is necessary to deal with the unmatched receptive fields for a better prediction.

To address the first challenge, inspired by [50], we collect our own dataset containing both synthetic aerial images
and RSS data with the game engine from Grand Theft Auto V. Moreover, to address the second challenge, we derive
the relationship between RSS and aerial images by introducing the communication channel model to convert RSS into
RSS Density Map (RDM), i.e. the synthetically-aligned density map derived according to RSS. As for the structure of
our network, one intuitive design will be to separately use RGB images and RSS for estimating the crowd density map
and ensemble the results in the final stage. However, without the guidance from RGB images, it is difficult to estimate
the density map only from RSS since RSS does not contain the location information of UEs. Therefore, we propose
a novel network architecture, named RDM-Image Fusion Network (RIFNet), to effectively integrate RDM with RGB
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image feature maps. Finally, to address the third challenge, we further propose a new Ring Loss function by considering
the uncertainty to differentiate the importance of each pixel. Experimental results show that the proposed method for
fusing RGB images with signal data can further improve the image-based baselines by at least 11.2% in terms of Patch
Mean Absolute Error (PMAE).

The contributions of this paper are summarized as follows.

• Today flying BSs are usually allocated by heuristics or based on the crowd counting from received signals. To
accurately estimate the crowd density map, we propose an approach, new to the current practice of crowd density
estimation, by integrating the RGB aerial images and complementary information from RSS. To the best of our
knowledge, this is the first work attempting to combine these two complementary information for crowd density
estimation.

• We propose the RIFNet structure to fuse the image data with corresponding RSS, while the proposed RIFNet
can be appended to existing CNN-based crowd density estimation methods. Moreover, the Ring Loss function
further takes the uncertainty of the signal information into consideration and assists the network in making the
connection between two input data.

• Experimental results show that the proposed method for fusing RGB images with signal data together with the
Ring Loss function outperforms the baselines. Moreover, the dataset containing RGB images and RSS is released
as a public download 1 for future research.

The remainder of this paper is structured as follows. Section 2 presents the related works. In Section 3, we describe
the relation of RSS and RGB images and propose a novel model for integrating the RGB aerial images and RSS. We
introduce our experimental setup and present our experimental results in Section 4. Finally, Section 5 concludes this
research.

2 RELATEDWORK

Crowd counting plays an important role for many applications, e.g., video surveillance [57], automatic driving tech-
nologies [2, 24, 52]. Existing approaches of crowd counting or crowd density estimation can be divided into two main
categories, image-based and non-image-based, by their sources. The image-based approach can be further split into the
following aspects: detection-based, regression-based, and CNN-based methods.

2.1 Image-based Approach

2.1.1 Detection-based Methods. Previous works estimate the crowd count by first detecting and locating the head,
parts of the body, or the full body for each person based on the hand-crafted and low-level features, and then counting
the number of detected people [9, 11, 12, 19, 45], which can be further integrated with tracking [22, 44]. For example,
Dalal and Triggs [9] propose a method which trains a classifier using features extracted from the full body. Moreover,
Dollár et al. [11] analyze the statistics of pedestrian scale, occlusion, and location of multiple datasets in pedestrian
detection and measure the performance in relation to these statistical information. These methods may be successful in
low-density crowd scenes. However, they are inapplicable to extremely-congested crowd scenes due to the occlusion of
facial and body parts.

2.1.2 Regression-based Methods. Due to the failure of detection-based methods in highly congested scenes, a line of
research aims to directly estimate the total number of the people from images by regressing the image features to the
1Link to the dataset and some experimental results have been made available at: https://github.com/RIFNet/RIFNet
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crowd count [5, 18, 36, 39, 54]. Typically, the process contains two main steps: i) feature extraction, including edge
features and texture features, and ii) people count regression, which regress the corresponding image features to the
total count. For example, Ma and Chan [36] propose an integer-programming method to estimate the number of people
in a set of overlapping sliding windows through mapping local features to the people count. Moreover, Ryan et al. [39]
split a single person into multiple foreground blobs, then use the local features to count the people in each blob segment.
However, regression-based methods only output the count number instead of the crowd density map and neglect the
spatial information, which makes it unsuitable to be applied on UAV allocation.

2.1.3 CNN-based Methods. Due to the success of deep CNN in the computer vision community, a recent line of research
mostly focuses on CNN-based approaches to predict density maps [4, 6, 8, 14, 26, 32, 33, 35, 40, 43, 47, 51, 56]. For
example, Zhang et al. [56] assume that different sizes of kernels can extract different sizes of features, which can
alleviate the scale-variation problem, and propose a Multi-column CNN (MCNN) for crowd counting. Later on, to deal
with different scales of crowd separately, Sam et al. [40] propose a Switch-CNN to classify each input image patch
to choose a suitable column for estimating the crowd. Following the similar idea, Li et al. [26] propose to use dilated
convolutional layers for reducing the required parameters of modeling different scales and improving the performance.
Besides multi-column approaches, other strategies like multi-layer regression [47] and deformable convolution [14] are
also applied to crowd estimation models to improve the accuracy of prediction. To further improve the performance,
attention mechanism has been widely used [6, 20, 28] and introduced to enhance the extracted features. For instance,
Jiang et al. [20] integrate the Density Attention Network and the Attention Scaling Network to provide attention
masks related to regions of different density levels. Also, Chen et al. [6] propose the Crowd Attention Convolutional
Neural Network, which can assess the importance of a human head at each pixel location by automatically encoding
a confidence map. Using this guidance of the confidence map, the network focuses more on the position of human
head in estimated density map, avoiding misjudgements effectively. Meanwhile, Lian et al. [27] propose to integrate the
depth map and RGB images for crowd counting and localization by using the depth-aware kernels and anchors. Even
though these approaches improve the performance of crowd density estimation, it is noticeable that image-based crowd
density estimation approaches still have their limitations, including the lack of robustness against bad environmental
conditions (such as poorly-lit spaces or bad weathers), and the incapability to deal with people behind objects.

2.2 Non-Image-based Approach

Without utilizing cameras to capture the images, some studies focus on crowd analysis using WiFi signals [15, 37, 58].
For example, Zhou et al. [58] try to count the number of people in a room by identifying a set of differential WiFi
Channel State Information (CSI) measurements. Another research, Ooi et al. [37] focus on the periodic transmission of
probe-request frames and study the correlation of theseWiFi frames with the actual number of people present in a crowd.
However, these research can only be applied to indoor environments or scenes without crowded people. Moreover, since
public WiFi is usually used in touristic areas only and may be sparse at less popular places, it is difficult to estimate
the density map directly. On the other hand, as mobile phones have become ubiquitous, the cellular-based solutions
have become popular [42, 53], which are able to perform people counting in any location, from indoor environments
(via picocells) to vast outdoor areas (via macrocells). However, WiFi-based and cellular-based approaches only output
the count number instead of the density map. To the best of our knowledge, the proposed RIFNet is the first work
combining RSS and aerial images for crowd density map estimation.
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3 PROPOSED METHOD

Given the aerial images captured by UAVs and the RSS on UAVs (flying base stations), the goal of this paper is to estimate
the crowd density map by combining aerial images with RSS. Therefore, to address the challenge of data heterogeneity,
we first model the relationship between RSS and aerial images by introducing the communication channel models to
convert RSS into RSS Density Map (RDM), i.e., the aligned density map derived from RSS. Equipped with RDM, we
then propose RDM-Image Fusion Network (RIFNet) that effectively integrates RGB aerial images and RDM through
middle-layer and late-layer fusion. Finally, to address the challenge of uncertainty between RSS and RGB images, we
design a new loss that considers the uncertainty to differentiate the importance of each pixel.

3.1 RSS Density Map

To model the relationship between RSS and aerial images for alignment, one simple solution is to use a data-driven
approach, which directly feeds both raw RSS and RGB images into the model and uses the crowd count as the supervision
for learning how to fuse the data. Nevertheless, this simple approach requires a large amount of data since the two
inputs have different dimensionality and lack direct connections. Therefore, we propose to first transform the RSS
information into RDM, which provides the clue of density map from the RSS information. Specifically, due to the
attenuation through propagation, the RSS is related to the distance between the transmitters (UEs of people) and the
receivers (UAVs). Therefore, we can evaluate how far a person is from the UAV according to RSS.

To obtain a transformation from the RSS to the distance of the crowd, we introduce a general channel model for
radio signals. An emitted signal propagates through space in all directions, resembling an inflating sphere. Based on the
conservation of energy, every single point on the sphere surface should have the same energy. In addition, since the
surface area is proportional to the square of distance, the signal power should be inversely proportional to the square of
its propagating distance theoretically. Generally, according to previous research [46], the average path loss 𝐿𝑝𝑎𝑡ℎ (𝑑) of
a received power can be indicated by the 𝑛-th power of the distance 𝑑 , i.e., 𝐿𝑝𝑎𝑡ℎ (𝑑) ∝ ( 𝑑

𝑑0
)𝑛 , where 𝑑0 is the close-in

distance, implying a reference point for radio field strength measurements near the transmitter. Within this close-in
distance, the behavior of the signal attenuation becomes unpredictable. 𝑛 is the Path Loss Exponent (PLE), which is an
environmental dependent parameter, representing the rate of path dissipation. Therefore, 𝐿𝑝𝑎𝑡ℎ (𝑑) can be measured in
terms of decibel as follows.

𝐿𝑝𝑎𝑡ℎ (𝑑)𝑑𝐵 = 𝐿𝑝𝑎𝑡ℎ (𝑑0) + 10𝑛 × 𝑙𝑜𝑔10 (
𝑑

𝑑0
). (1)

By using Eq.1, RSS can be transformed into the distance between UAV and UEs. It is worth noting that the effect of
multipath fading is not considered here since the crowd density estimation is usually deployed in open places, e.g.,
parades on squares. For indoor environments, Rician fading can be considered to build a more precise communication
model.

Meanwhile, to take maximum advantage of the signal data, the range of the received signal should be aligned with the
image as much as possible. Therefore, we assume that the direction of the camera is set to −90 degrees, facing directly
downward.2 There are two major benefits: i) the projection coordinate of the UAV is at the center of the whole image,
which maximizes the overlap between the range of received signals and aerial images; and ii) the setting minimizes the
perspective distortion when aligning the information with the aerial images.

However, when it comes to the real-world environment, the path loss with a fixed transmission distance should
be regarded as a random variable because the transmitted signal is affected by external factors such as geographical

2Later in the experiments, we will show that the proposed approach is error-tolerant with the variation of the direction of the camera.
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Fig. 1. Illustrative example of the flying base station for crowd density map estimation.

terrains or other existing objects. A common approach to build a practical model of path loss is to utilize the statistical
regression to estimate the parameter 𝑛 that best describe the measurements.3 Nevertheless, the measurement error still
exists in the regression model. To deal with the measurement error, instead of using the exact transformed distance
from RSS, we calculate the histogram of the distances with the bin width equal to 𝑘 meters for uncertainty tolerance.

Take Fig. 1 as an example. The camera on the UAV faces down and captures the aerial images, while the UEs request
the communication from the UAV (flying base station). Let 𝑃 denote the projection point of the UAV on the horizontal
plane and 𝑟𝑖 is the distance between UAV and the 𝑖-th UE (UE𝑖 ) calculated from the channel model. Moreover, 𝑟 ′

𝑖
is

defined as the projection of 𝑟𝑖 on the horizontal plane, indicating the distance between a UE𝑖 and 𝑃 . By using Eq.1,
we can transform RSS into the distance between UAV and UEs. Let 𝑅( 𝑗) denote the number of UEs in the 𝑗-th bin
of the distance histogram, which is calculated by adding up the number of 𝑟 ′

𝑖
that falls in a ring area, defined as

( 𝑗 − 1)𝑘 < 𝑟 ′
𝑖
≤ 𝑗𝑘, 𝑗 ∈ Z+. As such, the transformation from RSS to the distance histogram is illustrated as Fig. 2(a).

After transforming RSS into the distance histogram, the one-dimensional feature is still not aligned to the aerial
images. To facilitate the fusion of RSS and images, we convert the distance histogram shown in Fig. 2(a) into a density
map of the same size as the images, referred to as RSS Density Map (RDM). To do so, we first calculate the magnification
ratio of the images. Consider a camera with focal length 𝑓 , size of the photosensitive element𝑊 × 𝐿, located at altitude
ℎ (can be derived by altimeter sensors), and taking pictures of𝑤 × 𝑙 pixels vertically downward. The ratio of the actual
size of the object to its size in the image is denoted as 𝑞/𝑝 , where 𝑞 is the object distance and 𝑝 is the image distance.
From the Thin Lens Equation 1/𝑝 + 1/𝑞 = 1/𝑓 , the scale ratio 𝑞/𝑝 is approximately 𝑞/𝑓 when photographing at a long
distance such that 𝑞 ≫ 𝑓 . While 𝑓 remains a constant, the scale ratio 𝑞/𝑓 is directly proportional to the object distance
𝑞. All pixels are assumed to have the same scale ratio as the center of the image4, which is ℎ/𝑓 because 𝑞 equals ℎ. That
is,

𝑠𝑐𝑎𝑙𝑒 𝑟𝑎𝑡𝑖𝑜 =
𝑞

𝑝
≈ 𝑞

𝑓
=
ℎ

𝑓
. (2)

3In this paper, we also apply the regression method to generate a path loss model that best fits the reality. The regression process will be explained in
detail later in Section 4.1.2.
4It is worth noting that objects appearing at different positions in the image, such as at the middle and near the boundaries, have distinct object distance
𝑞, which causes some minor perspective distortion but can be neglected in our scenario (ℎ is large).
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(a) Distance Histogram (b) RDM

Fig. 2. An illustrative example of generating RDM. (a) The distance histogram that shows the number of people in each ring. Every
bin in the graph represents one ring, with width of the rings 𝑘 equals 1.8 meters. (b) An illustration of RSS Density Map (RDM). Every
pixel value represents the expected number of people at that specific area.

Based on the scale ratio, the number of pixels in the image that corresponds to 1 meter of width and length in the real
world are expressed by,

𝑀𝑤𝑖𝑑𝑡ℎ :
𝑤

𝑊 × ℎ/𝑓 (𝑝𝑖𝑥𝑒𝑙/𝑚),

𝑀𝑙𝑒𝑛𝑔𝑡ℎ :
𝑙

𝐿 × ℎ/𝑓 (𝑝𝑖𝑥𝑒𝑙/𝑚). (3)

Generally speaking, under most circumstances, the magnification ratios of the width and the length are identical. Thus,
we define the magnification ratio𝑀 = 𝑀𝑤𝑖𝑑𝑡ℎ = 𝑀𝑙𝑒𝑛𝑔𝑡ℎ . Using this magnification ratio, in addition to Bresenham’s
circle algorithm [3] with every increment being 𝑘 ′ pixels on the radius, and the center of the image being the center of
the circle, we generate concentric circles until the diameter exceeds the diagonal length of the image. Let 𝑘 ′ denote the
number of pixels converted from 𝑘 meters, where 𝑘 ′ = 𝑘 ×𝑀 . Consequently, the spaces between each concentric circles
are the results of mapping the ring areas from the real-world to the image. Afterward, dividing the number of people on
individual rings with their corresponding area leads to the average crowd density in the ring. We eventually establish a
matrix with the same size as the input image, assign the value of each entry with its corresponding crowd density, and
then pass it through a Gaussian filter to blur the boundaries of adjacent rings to alleviate the quantization error. Fig.2(b)
illustrates an example of the output of RDM from the RSS shown in Fig. 2(a). To sum up, the original received RSS is
now transformed into RDM which has the same size and dimension as the input images. It simultaneously contains
information concerning distance and the number of people, greatly reducing the difficulty of merging the two kinds of
raw data.

3.2 RIFNet

Equipped with aligned RGB aerial images and RDM, the next goal is to effectively integrate RDM with RGB images.
One naive way is to concatenate the image and RDM into a new tensor and use neural networks to process the tensor.
Nevertheless, the large-sized tensor requires a large amount of data to train the neural network for fusing. Another
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Fig. 3. Structure of the RIFNet, composed of the image-based Branch (the upper part), which takes an RGB image as input, and
the signal-based Branch (the lower part), which takes an RDM as input. Their outputs are the Image-based Density Map and
Signal-Enhanced Density map, respectively. In this illustrative figure, CSRNet is implemented as the imaged-based branch but, in
fact, any CNN-based state-of-the-art approach can be implemented as the image-based branch. For the signal-based branch, it is
composed of an RDM encoder and the output layer. The two branches are connected by the middle-layer CNN and the late-layer
CNN. Numbers next to the feature maps represent their channels. The kernel size of all CNNs are 3 × 3. Dilation rate of the RSS
encoder in the signal-based branch is 2.

approach is to use existing fusion approaches to fuse the RGB aerial images and RDM, e.g., element-wise (Hadamard)
product [41], but the values in the two data represent completely different meanings (i.e. raw RGB color code and
average crowd density), which leads to an inferior performance.

Therefore, to address the second challenge of data heterogeneity, we propose a novel RDM-Image Fusion Network
(RIFNet) to fuse the information. The network architecture of RIFNet is illustrated in Fig. 3, which contains the image-
based branch (upper part) and signal-based branch (lower part). The key idea is to fully exploit the information from
RDM to complement the information from RGB images. The image-based approaches generate the image-based density
map. Meanwhile, the image-based branch also provides the signal-based branch with additional spatial guidance to
predict the Signal-Enhanced Density Map (SDM) as shown in bottom-right side of Fig. 3.

Specifically, for the image-based branch, given the RGB aerial images, we use state-of-the-art image-based density
map estimation to generate a density map as the output, referred to as the image-based density map. On the other hand,
for the signal-based branch, the goal is to efficiently make use of the image-based branch and extract the complementary
information from the RDM. Since the pixel values in both density maps indicate the expected number of people in the
image, the extracted features close to the output layer in the image-based branch should be more similar to the features
extracted from the signal-based branch. Therefore, we conduct a multi-layered feature fusion, which takes the extracted
features from the middle layer and late layer of the image-based branch, denoted by 𝐹𝑚𝑖𝑑𝑑𝑙𝑒 and 𝐹𝑙𝑎𝑡𝑒 , respectively,
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and then uses CNNs to transform 𝐹𝑚𝑖𝑑𝑑𝑙𝑒 and 𝐹𝑙𝑎𝑡𝑒 into 𝐹 ′
𝑚𝑖𝑑𝑑𝑙𝑒

and 𝐹 ′
𝑙𝑎𝑡𝑒

for the signal-based branch, i.e.,

𝐹 ′
𝑚𝑖𝑑𝑑𝑙𝑒

= 𝑔𝑚 (𝐹𝑚𝑖𝑑𝑑𝑙𝑒 ;𝜃𝑚), (4)

𝐹 ′
𝑙𝑎𝑡𝑒

= 𝑔𝑙 (𝐹𝑙𝑎𝑡𝑒 ;𝜃𝑙 ), (5)

where 𝑔𝑚 and 𝑔𝑙 are the transformation function composed by CNNs with 𝜃𝑚 and 𝜃𝑙 as learnable parameters. Since the
middle-layer and late-layer information is fused afterward, the number of layers for 𝜃𝑚 is greater than that of 𝜃𝑙 to
make the information compatible. Furthermore, let 𝑋𝑅𝐷𝑀 denote the RDM. We use another transformation function
𝑔𝑅𝐷𝑀 to extract features from 𝑋𝑅𝐷𝑀 , denoted as 𝐹 ′

𝑅𝐷𝑀
, for matching 𝐹 ′

𝑚𝑖𝑑𝑑𝑙𝑒
and 𝐹 ′

𝑙𝑎𝑡𝑒
, i.e.,

𝐹 ′𝑅𝐷𝑀 = 𝑔𝑅𝐷𝑀 (𝑋𝑅𝐷𝑀 ;𝜃𝑅𝐷𝑀 ), (6)

where 𝜃𝑅𝐷𝑀 represents the learnable parameters of the CNN encoder. Finally, 𝐹 ′
𝑚𝑖𝑑𝑑𝑙𝑒

, 𝐹 ′
𝑙𝑎𝑡𝑒

and 𝐹 ′
𝑅𝐷𝑀

are concatenated
and fed into the decoder to derive the Signal-enhanced Density Map (SDM). Using SDM as the auxiliary information,
a Hadamard product is applied on the image-based density map and the SDM to generate the final density map. In
summary, RIFNet fully leverages the image-based approach to extract the complementary information from RDM to
achieve a better estimation.

3.3 Loss Function

Themean square error (MSE) loss is a standard loss that computes the pixel-wise Euclidean distance between ground truth
density map and the predicted density map. Let 𝑋 (𝑖) and 𝑋𝑅𝐷𝑀 (𝑖) denote the 𝑖-th RGB image and RDM, respectively.
The formula for pixel-wise MSE loss 𝐿𝑀𝑆𝐸 can be expressed by

𝐿𝑀𝑆𝐸 =
∑
𝑖

| |𝑍 (𝑋 (𝑖), 𝑋𝑅𝐷𝑀 (𝑖);Θ) − 𝑍𝐺𝑇 (𝑖) | |22, (7)

where 𝑍 (𝑋 (𝑖), 𝑋𝑅𝐷𝑀 (𝑖);Θ) is the predicted density map of 𝑖-th training sample by RIFNet, Θ represents all learnable
parameters in the RIFNet, and 𝑍𝐺𝑇 (𝑖) is the ground truth density map of 𝑖-th training sample. Another commonly-used
loss is the difference between the predicted count and the ground truth count, denoted by 𝐿𝑐 . Let 𝐶 (𝑖) and 𝐶𝐺𝑇 (𝑖)
denote the predicted count and ground truth count of the 𝑖-th training sample, respectively.

𝐿𝑐 =
∑
𝑖

| |𝐶 (𝑖) −𝐶𝐺𝑇 (𝑖) | |. (8)

However, the errors of different regions in the predicted density map are not equally important due to the third
challenge of uncertainty between RSS and RGB. For example, when the ring region converted from 𝑗-th bin of the
distance histogram is fully inside the image, the predicted count should be the same as 𝑅( 𝑗). If the ring region is only
partially inside the image due to the rectangularity of image, the predicted count may have a larger error caused by the
uncertainty.

Therefore, we propose a novel Ring Loss, denoted by 𝐿𝑟𝑖𝑛𝑔 . Let 𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑖, 𝑗) and 𝑃𝑔𝑡 (𝑖, 𝑗) denote the estimated
count and ground truth count of the (partial) ring region converted from 𝑅( 𝑗) in the 𝑖-th training sample, respectively.
The Ring Loss function is defined as follows.

𝐿𝑟𝑖𝑛𝑔 =
∑
𝑖

𝑛𝑟∑
𝑗=1

𝐴𝑖𝑛
𝑗

𝐴 𝑗
× ||𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒 (𝑖, 𝑗) − 𝑃𝑔𝑡 (𝑖, 𝑗) | |, (9)
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where 𝑛𝑟 is the number of ring regions. 𝐴𝑖𝑛
𝑗
and 𝐴 𝑗 are respectively the ring area inside the image and the area of the

whole ring area converted from 𝑅( 𝑗). In other words, 𝐴𝑖𝑛
𝑗
/𝐴 𝑗 represents the certainty of region 𝑅( 𝑗). Finally, the total

loss function can be written as,
𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑀𝑆𝐸 + 𝜆 × 𝐿𝑟𝑖𝑛𝑔, (10)

where 𝜆 is a hyper-parameter controlling the importance of the ring loss.5

3.4 Training Strategy

The training process consists of three phases:

• Phase 1: Load the pretrained weights (if any) and train a traditional image-based crowd density estimation
model as the image-based branch.

• Phase 2: Load the pre-trained image-based branch, freeze the pre-trained parameters, and train the middle-layer
CNN, the late-layer CNN, and the signal-based branch.

• Phase 3: Unfreeze all the parameters and train the whole model (end-to-end).

To facilitate the learning from the signal-based branch, we randomly block a 50 × 50 (pixel) square in the input RGB
image in phase 2 and phase 3. This makes the model acquire more information from the signal-based branch since it
does not have any clue about the blocked areas from the RGB image. It is worth noting that one alternative solution is
to train the architecture in an end-to-end manner, i.e., directly taking RSS and RGB as inputs and using CNNs to fit the
groundtruth. However, training from scratch makes the model focus on the RGB branch and ignore the RSS branch
since it is easier to fit RGB to density map. Moreover, as the model initially does not know how to use RSS input, it may
interfere the RGB branch and leads to an inferior performance. In contrast, by first pretraining the image-based branch
and fixing the parameters, the network is equipped with basic abilities and focuses on using RSS to further improve the
results.

4 EXPERIMENT

4.1 Experimental Setup

4.1.1 UAV-GCC Dataset. To train and evaluate the performance of the proposed RIFNet, it requires a dataset that
contains both RSS and RGB images. Inspired by previous work [50], we build such dataset by a similar manner, i.e.,
generating the synthetic crowd scenes from game engines, together with the corresponding RSS. Specifically, we create
a new dataset, UAV-GCC dataset, using the game engine from Grand Theft Auto V (GTA5) to collect synthetic images
with the camera facing straightly downward and locating at 15 or 20 meters above the ground. There are 3, 125 images
in total with the resolution of 225 × 400. To increase the diversity of the crowd density, the number of people in our
dataset ranges from 20 people to 300 people, with an average of 115 people. Since the game engine is unable to create
synthetic RSS data, we generate hypothetical signals from the ground truth using a regression channel model (details in
Section 4.1.2). It is worth noting that the proposed synthetic dataset is further transformed by applying the SE Cycle
GAN proposed in [50]. Fig. 4 demonstrates two examples of the translated synthetic images. We partition the proposed
dataset into 5 folds and perform the 5-fold cross validation.

4.1.2 Channel Model Generation. Since the GTA5 game engine cannot generate synthetic RSS data, we use real-world
RSS data for regressing the channel model. Table 1 summarizes the experimental equipment. Specifically, we use Asus

5The effect with different values of 𝜆 will be further discussed in Section 4.4.
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Fig. 4. Illustration of the translated synthetic images generated by SE Cycle GAN.

Table 1. Parameters of Radio Signal Strength (RSS) Measurement for Regression Model

Radio Signal Wi-fi (802.11)
Frequency 5.8 GHz
Transmitted Power 25 dBm
User Equipment (UE) Asus ZS630KL

ZS630KL as the UE and communicate with the flying base station through Wi-fi (802.11) with the transmit power of
25𝑑𝐵. We choose an outdoor open space as the experiment environment to be consistent with the scenarios in the
UAV-GCC dataset. Therefore, the path loss model in [21] previously mentioned as Eq.1 can be applied, i.e.,

𝐿𝑝𝑎𝑡ℎ (𝑑)𝑑𝐵 = 𝐿𝑝𝑎𝑡ℎ (𝑑0) + 10𝑛 × 𝑙𝑜𝑔10 (
𝑑

𝑑0
) + 𝑋 . (11)

The close-in distance 𝑑0 is set to 1 meter in our experiment and the additional random variable 𝑋 represents the
uncertainties caused by the environment. We utilize the 5.8𝐺𝐻𝑧 WiFi signal to simulate the lower frequency 5G signals
(sub 6𝐺𝐻𝑧) since there is an overlap on their frequency band. Meanwhile, since it is also less likely to experience any
interference, we use a UAV installed with a WiFi access point as the transmitter. Then, considering the projection
point of the UAV to be the center point, we collect the real-world RSS at 4 different locations on 20 concentric circles,
where each with its radius 1 meter larger than the previous one. Thus, in a circular area with a radius of 20 meters,
RSS at 80 different locations are measured. An illustrative image of our experiment can be seen in Fig 5. Through the
regression of the parameters of the channel model, PLE(n), 𝐿𝑝𝑎𝑡ℎ (𝑑0)[dB], and 𝑋 [dB] are set to 2.76744, 47.7103, and
1.0875, respectively. Finally, the path loss model is derived as,

𝐿𝑝𝑎𝑡ℎ (𝑑)𝑑𝐵 = 47.7103 + 27.6744 × 𝑙𝑜𝑔10 (𝑑) + 1.0875. (12)

From Eq.12 and the magnification ratio mentioned in Section 3.1, we can calculate the RSS of each people in an image
to generate a hypothetical RSS data for the UAV-GCC dataset.

4.1.3 Ground Truth Generation. Similar to current CNN-based crowd counting methods [40, 56], we generate the
ground-truth density map 𝑍𝐺𝑇 by convolving the ground truth dot map with a Gaussian Kernel as follows.

𝑍𝐺𝑇 (𝑥) =
𝑁𝑝∑
𝑗=1

𝛿 (𝑥 − 𝑥 𝑗 ) ×𝐺𝜎 (𝑥), (13)
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Fig. 5. An illustrative example of collecting real-world RSS data for channel model regression. The black curve in the photo on the left
represents the concentric circles. The purple dots and the yellow dot are respectively the locations we measure the RSS data and the
center of concentric circles. There are 40 circles in total and four RSS data are measured on each circle at different locations.

where 𝑥 is the position of an arbitrary pixel, 𝑥𝑖 is the position of the pixel where a person is present, 𝑁𝑝 indicates the
total number of people in the image, 𝛿 is the Dirac Delta Function, and 𝐺𝜎 (𝑥) is the Gaussian kernel with standard
deviation 𝜎 = 3.5.

4.1.4 Baselines and Implementation Details. Since this is the first work combining RSS and RGB aerial images, we first
evaluate the performance of the proposed RIFNet by using the following five CNN-based crowd density estimation
approaches for the image-based branch.

• CSRNet [26]. The first 10 layers of the VGGNet is used as a front-end pretrained model in order to effectively
extract features of input images. Afterward, a dilated convolutional neural network is added to not only increase
the receptive field without using any pooling layer but also ensure that the output feature map size is the same
as the input size.

• CAN [31]. This model first extracts basic features from an image by using a pre-trained VGG16 front-end,
and the VGG features are fed to a Spatial Pyramid Pooling [16] to extract multi-scale context information. The
network can thus learn the importance of each such feature at every location in an image.

• MCNN [56]. The network structure ofMCNN can be divided into three separate columns. Each column comprises
CNN filters with different sizes of receptive fields and is adaptive to variations in people/head size. By combining
the outputs of all CNNwith learnable weights, MCNN produces the final density map based on geometry-adaptive
kernels without the requirement of knowing the perspective map of the input image.

• SFCN [50]. The proposed network is first pre-trained on synthetic data generated by an automatic data collector
and labeler and fine-tuned by using real data. They also proposed the SFCN structure, which is a domain adaptive
method by combining the advantage of Fully Convolutional Network (FCN) [34] and the Spatial Encoder [38].

• SCAR [13]. The network structure is composed of two branches, the Spatial-wise Attention Model (SAM) and
the Channel-wise Attention Model (CAM). SAM is able to encode the pixel-wise context of the input images,
while SAM extracts more discriminative information to help the model pay attention to the head regions.

Most of these existing models adopt VGG-16 as part of the structure. To increase the diversity of our experiment, we
implement SFCN with ResNet-101 as its backbone. The trained models then serve as the image-based branch in the
RIFNet structure. Please note that the random-blocking is also used for baselines during training to guarantee the
Manuscript submitted to ACM
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fairness of comparison. We use Adam as the optimizer with the batch size as 1 and the weight decay as 5 × 10−4. The
hyperparameter 𝜆 is set to 0.005 for RIFNet.

4.1.5 Evaluation Metrics. Let 𝐷𝑡𝑒𝑠𝑡 denote the testing data. The Mean Absolute Error (MAE) and the Root Mean
Square Error (RMSE) are common evaluation criteria of former researches on crowd density estimation, which can be
represented as follows.

𝑀𝐴𝐸 =
1

|𝐷𝑡𝑒𝑠𝑡 |

|𝐷𝑡𝑒𝑠𝑡 |∑
𝑖=1

|𝐶 (𝑖) −𝐶𝐺𝑇 (𝑖) |, (14)

𝑅𝑀𝑆𝐸 =

√√√
1

|𝐷𝑡𝑒𝑠𝑡 |

|𝐷𝑡𝑒𝑠𝑡 |∑
𝑖=1

(𝐶 (𝑖) −𝐶𝐺𝑇 (𝑖))2, (15)

where |𝐷𝑡𝑒𝑠𝑡 | is the size of the testing set,𝐶𝐺𝑇 (𝑖) and𝐶 (𝑖) are respectively the number of people in the ground truth and
the estimated number of people in the 𝑖-th image, which are obtained by the sum of all pixels in the estimated/ground
truth density maps. However, MAE and RMSE only consider the error in the whole image, lacking the consideration of
the correctness in each local area. In other words, when the model overestimates the number of people in some regions
and underestimates the number of people in some other regions, MAE or RMSE may still be very small. Therefore,
following previous work [48], we adopt the Patch Mean Absolute Error (PMAE) and the Patch Root Mean Squared
Error (PRMSE) as the primary criteria.

𝑃𝑀𝐴𝐸 =
1

𝑛𝑝 × |𝐷𝑡𝑒𝑠𝑡 |

|𝐷𝑡𝑒𝑠𝑡 |∑
𝑖=1

𝑛𝑝∑
𝑗=1

|𝐶 (𝑖, 𝑗) −𝐶𝐺𝑇 (𝑖, 𝑗) |, (16)

𝑃𝑅𝑀𝑆𝐸 =

√√√√
1

𝑛𝑝 × |𝐷𝑡𝑒𝑠𝑡 |

|𝐷𝑡𝑒𝑠𝑡 |∑
𝑖=1

𝑛𝑝∑
𝑗=1

(𝐶 (𝑖, 𝑗) −𝐶𝐺𝑇 (𝑖, 𝑗))2, (17)

where 𝑛𝑝 is the number of patches in one image, 𝐶 (𝑖, 𝑗) and 𝐶𝐺𝑇 (𝑖, 𝑗) are respectively the estimated number and the
ground truth number of people in the 𝑗-th patch of 𝑖-th image. By computing MAE and RMSE of each patch, PMAE and
PRMSE reflect the local performance of each sub-area. In the following sections, we evaluate the experiment results by
partitioning every image into 12 patches, i.e., 𝑛𝑝 = 12.

4.2 Evaluations on Density MapQuality

Table 2 compares the performance of CSRNet, CAN, MCNN, SFCN and SCAR models with and without RIFNet. The
results manifest that, in terms of all evaluation metrics, the performance of all models improves with the Ring Loss and
the signal-based branch appended. For example, the proposed approach respectively improves CSRNet, CAN, MCNN,
SFCN and SCAR by 15.9%, 11.2%, 18.3%, 21.7% and 21.2% in terms of Patch Mea Absolute Error (PMAE). The improved
density maps show not only a better local performance (PMAE and PRMSE) but also a more accurate people count
(MAE and RMSE), proving the usefulness of the signal-based branch and the compatibility of the proposed RIFNet with
existing approaches. Moreover, we also conduct the experiments of directly fusing the density maps from RGB images
and the RSS (RDM) based on Hadamard product. The experimental results (with direct fusion) suggest that if the inputs
are not aligned with a proper method, the additional RSS data might destroy the original features of the RGB images,
making the performance even worse than that of using RGB-only.

Manuscript submitted to ACM



14
Kai-Wei Yang, Yen-Yun Huang, Jen-Wei Huang, Ya-Rou Hsu, Chang-Lin Wan, Hong-Han Shuai, Li-Chun Wang,

and Wen-Huang Cheng

Table 2. The experimental results of each state-of-the-art image-based crowd density estimation method appended with the signal-
based branch, together with the baselines (direct fusion) of using Hadamard product for fusing the RGB-based and RSS-based density
maps.

PMAE PRMSE MAE RMSE
CSRNet 0.6465 0.9576 4.55 6.9686
CSRNet with direct fusion 0.8364 1.2898 5.80 7.6851
CSRNet+RIFNet (ours) 0.5437 0.7939 3.20 4.7457
CAN 0.6286 0.9577 4.85 7.3317
CAN with direct fusion 0.8313 1.2847 7.02 11.9908
CAN+RIFNet (ours) 0.5582 0.8289 3.80 5.6308
MCNN 1.0607 1.5125 9.70 13.0963
MCNN with direct fusion 1.2463 1.8306 10.23 14.0749
MCNN+RIFNet (ours) 0.8669 1.2497 6.66 8.9281
SFCN 0.7430 1.1122 6.12 8.8649
SFCN with direct fusion 1.0905 1.7614 8.07 11.1076
SFCN+RIFNet (ours) 0.5816 0.9089 3.88 6.3093
SCAR 0.6377 0.9020 5.32 6.9174
CAR with direct fusion 1.2618 1.9394 8.70 11.2314
SCAR+RIFNet (ours) 0.5034 0.7407 2.83 4.5372

Table 3. The computational efficiency of the baselines and RIFNet with different state-of-the-art image-based model as the image-
based branch, measured in terms of frames per second (fps). The result shows that RIFNet is able to achieve real-time performance.

Baseline 117 fps 93 fps 141 fps 26 fps 110 fps
RIFNet +CSRNet +CAN +MCNN +SFCN +SCAR

66 fps 60 fps 70 fps 26 fps 67 fps

Fig. 6 shows the qualitative results of the resulting density maps, where the first column shows the input RGB
images and the ground truth density map, and the remaining columns show the density map generated by baselines
and baselines with adding the signal-based branch (+). The number at the bottom right corner of each density map
represents the total count of people. The results show that the output density maps of the baselines (1𝑠𝑡 , 3𝑟𝑑 , 5𝑡ℎ and
7𝑡ℎ rows) appear to be blurry at the areas with a higher crowd density. This is in line with the theory of Jiang et al. [20]
that traditional image-based crowd density estimation methods seem to overestimate areas with clustered crowd. In
contrast, the proposed RIFNet successfully separates each individual in the output density maps (2𝑛𝑑 , 4𝑡ℎ, 6𝑡ℎ and 8𝑡ℎ
rows). This is because the original uncertainty is clarified by the RSS information. Hence, with additional knowledge
of the number of people given by RSS, combined with spatial information given by the RGB image, individuals in
crowded areas can be distinctly identified. This indicates that the proposed model effectively leverages the additional
enhancement of RSS information, and is able to estimate density maps with more explicit details.

4.3 Evaluations on Running Time

The computational efficiency is of crucial importance for providing low latency services of 5G cellular network. To
evaluate the running time, the CSRNet [26], CAN [31], MCNN [56], SFCN [50], and SCAR [13] are respectively used as
the image-based branch of the proposed RIFNet. The running time is tested on one NVIDIA Tesla V100 32GB GPU.
Recall that the size of the images in the UAV-GCC dataset used for training and testing is 225 × 400. The results are
shown in Table 3, which implies that RIFNet is able to achieve real-time performance for most approaches. SFCN-based
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Fig. 6. Comparison results of the ground truth, traditional image-based approach, and the RIFNet structure using CAN, CSRNET,
MCNN, SCAR and SFCN as the image-based branch.

RIFNet shows a relatively low computational efficiency as compared to the others because it has a much larger number
of parameters involved in its network structure.
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Table 4. Diagnostic experiments of the RIFNet structure using CSRNet and CAN as image-based branch.

PMAE PRMSE MAE RMSE
CSRNet Purely image-based 0.6465 0.9576 4.55 6.9686

SBB w/o Ring Loss 0.6098 0.8918 4.19 6.2539
Ring Loss w/o SBB 0.6052 0.9214 4.51 7.0752
SBB+Ring Loss 0.5437 0.7939 3.20 4.7457

CAN Purely image-based 0.6286 0.9577 4.85 7.3317
SBB w/o Ring Loss 0.5907 0.9148 3.97 6.3632
Ring Loss w/o SBB 0.6022 0.8942 4.70 7.0131
SBB+Ring Loss 0.5582 0.8289 3.80 5.6308

Table 5. Performance of the model with feature extraction from different stages in the CSRNet and CAN image-based branch. (SBB
refers to the signal-based branch)

CSRNet as image-based branch CAN as image-based branch
PMAE PRMSE MAE RMSE PMAE PRMSE MAE RMSE

w/o SBB 0.6465 0.9576 4.55 6.9686 0.6286 0.9577 4.85 7.3317
early 0.6624 1.0214 5.18 8.2789 0.6211 0.9154 4.35 6.6632
middle 0.6424 0.9530 4.46 6.8464 0.6086 0.9132 4.13 6.4677
late 0.6449 0.9709 4.90 7.4721 0.6109 0.9249 4.62 7.0869
early+middle 0.6270 0.9737 5.10 7.9178 0.6088 0.9024 4.06 6.2200
early+late 0.6250 0.9383 4.39 6.8590 0.6073 0.9090 4.04 6.4004
middle+late 0.6098 0.8918 4.19 6.2539 0.5907 0.9148 3.97 6.3632
early+middle+late 0.6225 0.9354 4.41 6.9018 0.6077 0.8934 4.31 6.7247

4.4 Ablation Study

Here, we conduct the ablation study to show the contributions of the signal-based branch and the proposed Ring
Loss. Specifically, we compare several variants with CSRNet and CAN serving as the image-based branch: i) Purely
image-based branch, which simply evaluates the performance without any RSS information, ii) SBB w/o Ring Loss,
which appends the signal-based branch (SBB) to the image-based branch but without using the Ring Loss, iii) Ring
Loss w/o SBB, which uses the Ring Loss as the additional constraint in the training process without appending the
signal-based branch to the image-based branch, and iv) SBB+Ring Loss, which provides complete information of RSS to
assist the crowd estimation by appending the signal-based branch and using the Ring loss in the training process. As
shown in Table 4, both the Ring Loss and the signal-based branch can effectively provide RSS information to assist the
original image-based approaches in generating a more accurate density map.

Moreover, since the architecture of RIFNet involves extracting features from the image-based branch and fusing
them with information of RSS, we examine the fusion at different stages to justify the designed architecture. Hence, we
apply the pre-trained model of CSRNet and CAN as the image-based branch and extract features from the early layer,
the middle layer, and the late layer. The early layer is defined as the output of the VGG16 backbone, while the middle
and late layers are defined as the center and the output of the model appended to the VGG16 backbone as shown in Fig.
3. The extracted features are fed into the signal-based branch for further fusion. Table 5 shows the results of fusion at
different stages for CSRNet and CAN, respectively. The results indicate that the model performs better if the features
are extracted from multiple layers, instead of a single layer, then fused with the RDM, since the multi-level fusion can
help the model learn to identify objects of different sizes. On the other hand, the result also suggests that fusion with
early-stage features results in a less accurate prediction. This is because the input of the signal-based branch is the
Manuscript submitted to ACM



Improving Crowd Density Estimation by Fusing Aerial Images and Radio Signals 17

Table 6. Performance of the model with different weight of the ring loss while using CSRNet and CAN as image-based branch

CSRNet-based RIFNet CAN-based RIFNet
PMAE PRMSE MAE RMSE PMAE PRMSE MAE RMSE

𝜆=0.05 0.6360 0.9237 4.95 7.2118 0.6244 0.9300 4.43 7.1705
𝜆=0.03 0.6279 0.9576 4.63 7.2588 0.6172 0.9486 4.76 7.4942
𝜆=0.01 0.6151 0.9355 4.66 7.3483 0.6102 0.9541 4.73 7.6196
𝜆=0.005 0.6052 0.9214 4.51 7.0752 0.6022 0.8942 4.70 7.0131
𝜆=0.003 0.6059 0.9407 4.97 7.6147 0.6058 0.8991 4.24 6.4988
𝜆=0.001 0.6185 0.9367 4.82 7.3625 0.6076 0.9262 4.57 7.0962
𝜆=0.0005 0.6296 0.9723 5.02 7.8198 0.6192 0.9207 4.80 7.6667

Table 7. The experimental results of each baseline methods appended with the signal-based branch under angle variation.

PMAE PRMSE MAE RMSE
CSRNet 0.6408 0.9431 4.52 6.9542
CSRNet + RIFNet 0.5453 0.8005 3.25 4.9861
CAN 0.6073 0.9158 4.79 7.1496
CAN + RIFNet 0.5601 0.8342 3.92 5.7185
MCNN 1.0739 1.5208 9.75 13.1287
MCNN + RIFNet 0.8812 1.2643 6.81 9.0224
SFCN 0.7736 1.1238 6.26 8.9641
SFCN + RIFNet 0.6139 0.9187 3.94 6.4261
SCAR 0.6324 0.8619 5.18 6.9006
SCAR + RIFNet 0.5146 0.7647 3.02 4.9372

RDM which possesses more similar information with the image-based density map than with the raw image data (RGB
color code). However, the features extracted from the early layer of the image-based branch is more related to the raw
image data. Consequently, it is more difficult for the model to learn the connections between them.

To analyze and determine the hyper-parameter 𝜆 in the loss function shown in Eq.10, we evaluate the performance
of the proposed method for 𝜆 ranging in (0.0005, 0.05) with CSRNet and CAN. As shown in Table 6, the optimal value
is found to be 0.005. However, the model is rather stable with 𝜆 ∈ (0.01, 0.003).

Finally, we examine the robustness of the proposed model with different camera view angles. In Section 3.1, we assume
that the UAV’s angle of view is −90 degrees, i.e., facing directly downward. However, in the real world environment,
there might be some external factors causing the variation of the angle of view. We therefore conduct an experiment
to assess the influence of this variation on our performance. Specifically, we further collect 897 testing images by
randomly selecting the angle of view between −80 and −88 degree. The result is shown in Table 7, which manifests
that the proposed RIFNet still helps the baselines to better estimate the crowd density map. Compared with Table. 2,
the performance of purely image-based baselines without appending RIFNet has no significant difference, while the
baselines with the RIFNet is slightly worse than the results of no angle variation, due to the mismatch between the
image view and the signal sensing range. It is worth noting, though, that the proposed RIFNet still respectively improves
CSRNet, CAN, MCNN, SFCN and SCAR by 14.9%, 7.8%, 17.9% 15.5%, and 18.6% in terms of PMAE.
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Table 8. Evaluation of the RIFNet structure using existing CNN-based models as image-based Branch with unedited testing images
(w/o RC) and testing images with random cropping (w/ RC).

PMAE PRMSE
w/o RC w/ RC error↑ w/o RC w/ RC error↑

CSRNet 0.6465 0.9785 51% 0.9576 1.7740 85%
CSRNet+RIFNet 0.5437 0.7008 29% 0.7939 1.1370 43%
CAN 0.6286 0.8978 43% 0.9577 1.6818 76%
CAN+RIFNet 0.5582 0.6458 16% 0.8289 0.9965 20%
MCNN 1.0607 1.3556 28% 1.5125 2.1312 41%
MCNN+RIFNet 0.8669 1.1755 36% 1.2497 1.9332 55%
SFCN 0.7430 1.0648 43% 1.1122 1.8805 69%
SFCN+RIFNet 0.5816 0.9426 62% 0.9089 1.6994 87%
SCAR 0.6377 0.9251 45% 0.9020 1.6183 79%
SCAR+RIFNet 0.5034 0.6388 27% 0.7407 0.9733 31%

Table 9. Comparison between the performance of the baseline and the RIFNet structure under poor light situation.

PMAE PRMSE MAE RMSE
CSRNet 0.8648 1.3251 8.05 11.6487
CSRNet + RIFNet 0.7025 1.0295 5.30 7.1532
CAN 1.0055 1.6101 10.40 15.0653
CAN + RIFNet 0.8514 1.3956 7.76 12.2706
MCNN 1.2552 1.7168 11.38 15.2219
MCNN +RIFNet 1.0383 1.4370 8.41 10.6979
SFCN 1.7975 2.9411 17.96 23.7208
SFCN + RIFNet 1.5747 2.7008 15.53 20.0638
SCAR 1.2576 2.2014 12.49 15.1542
SCAR + RIFNet 1.2440 2.1160 8.86 12.4611

4.5 Case Study

Evaluations onRandomCropped Images.To examinewhether the additional RSS data can serve as a complementary
information under the circumstances where the crowd is partially occluded in the RGB images, we randomly block a
section of 50 × 50 pixels in every image throughout the testing process to simulate such situation. Furthermore, during
each testing procedure, the seed for generating the random sections are identical to guarantee the fairness of evaluation.
Table 8 shows the results of RIFNet incorporating different image-based approaches with and without random cropping.
In comparison to the testing results without random cropping the images, several conclusions can be drawn. i) Since
the signal-based branch in the RIFNet structure merely serves as a enhancement for the original image-based approach,
the output still depends on the RGB image input. Thus, despite the supplementary RSS information, there appears to be
an increase in all evaluation criteria. ii) For most models, the increment of error is smaller when incorporating with
RIFNet, proving that the fusion with signal information enhances the robustness of the model against occluded crowds.
iii) For the case in which SFCN and MCNN is used as the image-based branch, the increment in error rate appears to be
higher with addition information of RSS, which might be caused by the excessive number of learnable parameters and
fusing too many information from different branches. However, the error of SFCN with RIFNet is still obviously smaller
than that of SFCN without RIFNet, proving the usefulness of RSS information.
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Table 10. Comparison between the performance of the baseline and direct fusion.

PMAE PRMSE MAE RMSE
CSRNet 0.6465 0.9576 4.55 6.9686
CSRNet Hadamard 0.8364 1.2898 5.80 7.6851
CAN 0.6286 0.9577 4.85 7.3317
CAN Hadamard 0.8313 1.2847 7.02 11.9908
MCNN 1.0607 1.5125 9.70 13.0963
MCNN Hadamard 1.2463 1.8306 10.23 14.0749
SFCN 0.7430 1.1122 6.12 8.8649
SFCN Hadamard 1.0905 1.7614 8.07 11.1076
SCAR 0.6377 0.9020 5.32 6.9174
SCAR Hadamard 1.2618 1.9394 8.70 11.2314

Table 11. Comparison results between baseline and RIFNet on VisDrone dataset

PMAE PRMSE MAE RMSE
SCAR 1.8966 3.3494 12.97 20.5141
SCAR + RIFNet 1.7102 2.9241 11.11 14.9240

Evaluation on Poor Light Situation. To prove the robustness of the RIFNet with low-quality images, we selected
130 images from the UAV-GCC dataset with poor-light situations. The first row of Fig. 6 shows an example of such
poor-lighted images. The experimental results are shown in Table 9. Compared with Table 2, the data indicates that the
performance of the baselines drops when the input image is with very little light. On the other hand, equipped with the
RIFNet structure, most evaluation metrics suggest that the performance is less affected.
Evaluations on Direct Fusion We also try to align the two inputs of our network by means of doing Hadamard
product with raw RGB images and the RDM directly. The experiment results are shown in table 10.This suggests that if
the input are not aligned with a proper method, the additional RSS data might somehow destroy the original features of
the RGB images, making the performance even worse than that of the baseline.

4.6 Evaluations on Real Datasets

We further conducted experiments on a real UAV datasets, i.e., VisDrone dataset [59], with the model trained on our
synthetic datasets and SCAR as the image branch. Specifically, we first manually estimate the distance between the UAV
and crowd on 100 randomly-selected images, and then use the real RSS data with the same distance as the corresponding
RSS. Table 11 indicates that the proposed approach still achieves an obviously better result than the approach using
only RGB images. Figure 7 further illustrates one qualitative result with the original image, corresponding RDM, and
the results with and without RDM, which shows that the proposed approach can be directly applied to the real scene
without any modifications.

5 CONCLUSION AND FUTUREWORK

In this paper, we propose the novel structure of RDM-Image Fusion Network (RIFNet) to combine the information from
RGB images and the RSS to generate a more accurate crowd density map. Specifically, we first align RSS with RGB
images by using the communication model and propose RIFNet to effectively fuse the information. Moreover, a new
loss function is proposed to consider the uncertainty from RSS and makes the prediction consistent with the received
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(a) RGB image (Count: 19) (b) Corresponding RDM

(c) RIFNet without RDM (Count: 26) (d) RIFNet with RDM (Count: 24)

Fig. 7. Qualitative results on VisDrone dataset.

signals. Experimental results confirm that RIFNet can improve the overall performance. The proposed UAV-GCC dataset
containing RGB-images and their corresponding RSS data is released as a public download. In the future, since the
performance of crowd density estimation varies with different scenes, especially for signal-based methods, we plan to
leverage the concept of meta learning for training RIFNet to quickly fit a particular scene. Moreover, we plan to study
the problem of joint density map estimation by integrating the results from multiple UAVs for a large-scale density map
estimation.
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