
IEEE SENSORS JOURNAL, VOL. XX, NO. XX, XXXX 2020 1

Reconstructing QRS Complex from PPG by
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Abstract— Technology that translates photoplethysmogram (PPG)
into the QRS complex of electrocardiogram (ECG) would be trans-
formative for people who require continuously monitoring. How-
ever, directly decoding the QRS complex of ECG from PPG is
challenging because PPG signals usually have different offsets due
to 1) different devices, and 2) personal differences, which makes
the alignment difficult. In this paper, we make the first attempt
to reconstruct the QRS complex of ECG only from the recording
of PPG by an end-to-end deep learning-based approach. Specif-
ically, we propose a novel encoder-decoder architecture contain-
ing three components: 1) a sequence transformer network which
automatically calibrates the offset, 2) an attention network, which
dynamically identifies regions of interest, and 3) a new QRS complex-enhanced loss for better reconstruction. The
experiment results on a real dataset demonstrate the effectiveness of the proposed method: 3.67% R peak failure rate
of the reconstructed ECG and high correlation of pulse transit time between the reconstructed QRS complex and the
groundtruth QRS complex (ρ = 0.844), which creates a new opportunity for low-cost clinical studies via the waveform-
level reconstruction of the QRS complex of ECG from PPG.

Index Terms— Convolutional neural network, electrocardiography, encoder-decoder, photoplethysmography, transform
network.

I. INTRODUCTION

W ITH the increase in world population along with a
significantly aging subset, the continuous monitoring

of vital signs from electrocardiogram (ECG) has become more
and more important for personal healthcare. Specifically, ECG
contains five peaks ( represented by the letters P, Q, R, S and T)
which reflects the electrical activity of the heart by exploiting
electrodes placed on the skin, and thus providing essential
information for cardiovascular pathology [1]. However, it is
inconvenient to measure ECG by the standard 12-lead ECG
device since it requires putting several electrodes on different
skin positions, and this may cause skin irritation and discom-
fort during the recording.

On the other hand, photoplethysmogram (PPG) is an opti-
cally obtained signal that can be used to detect blood volume
changes in the microvascular bed of tissue [2]. Moreover,
the duration, magnitude and shape characteristics of the PPG
waveform can be translated to blood oxygen saturation [3],
heart rate [4], blood pressure [5], cardiac output [6] and
respiration rate [7]. Compared to ECG, the process of deriving
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PPG is noninvasive, more convenient to set up, and low-
cost. For example, some consumer-grade wearable devices like
smartwatches and smartphones have photo-transistors that can
offer continuous and long-term monitoring.

Although PPG technology has become popular for health-
care monitoring [8], ECG is still the standard and essential
measurement for medical diagnosis with abundant supporting
literature and studies. As such, doctors still rely on ECG for
diagnosis instead of using PPG. However, PPG and ECG are
intrinsically correlated since the changes in blood volume are
influenced by the electrical activity of the heart. The peak to
peak interval of PPG is also known to be highly correlated with
the R-R interval (the time elapsed between two successive R
peaks) of an ECG, indicating the possibility of deriving ECG
from PPG. Therefore, based on these observations, we propose
to utilize this correlation for directly reconstructing ECG from
the PPG measurement, which can leverage the advantages of
both the low cost and easy accessibility of PPG in addition to
the well studied base of ECG.

In light of the recent breakthroughs in the deep learning
field that opens up new possibilities for signal processing,
we propose in this study an end-to-end deep learning-based
approach to reconstruct the ECG waveform using the PPG
measurement. One of the possible solutions is to directly use
a Recurrent Neural Network (RNN) to transform PPG to ECG.
However, the RNN is sensitive to signal noises and computed
with time dependency, which may not be suitable for real-
time applications on resource-limited devices, such as ASIC
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and smartwatches. Therefore, we adopted a Convolutional
Neural Network (CNN) based encoder-decoder architecture
as a transform network to reconstruct ECG for two reasons:
1) the CNN is highly parallel, and 2) the encoder-decoder
architecture has been proved to be successful for tasks of
domain adaptation [9], signal denoising [10]–[12] and anomaly
detection [10]. Further, to deal with the inputs from different
instances, a sequence transformer network is proposed for the
temporal and magnitude transformation of the inputs. We also
used an attention network to make the transform network focus
on the correct part of PPG to better reconstruct the ECG
waveform. The contributions of this study are in the following.
• To the best of our knowledge, the proposed method is

the first end-to-end learning method to reconstruct ECG
directly from the raw PPG recordings without any ex-
tra handcrafted clinical features or explicit assumptions,
which can facilitate various applications of sensors, e.g.,
continuous monitoring of ECG, Pulse Transit Time (PTT)
estimation by using PPG only (can be directly used to
measure the blood pressure).

• We propose a novel encoder-decoder architecture con-
taining two components: 1) a sequence transformer net-
work which automatically calibrates the offset, and 2) an
attention network, which dynamically identifies regions
of interest. Moreover, a new loss function for better
alignment of R peaks is also proposed, while a signal
attention is further added to make the transform network
focus on the correct part of PPG to better reconstruct the
ECG waveform.

• The experiment results on the real dataset show that the
success ratio of R peak detection from the reconstructed
ECG waveform is 96.33%, and the difference between
the reconstructed R peak index value and the groundtruth
index value is only 16.11ms on average. In addition, the
correlation between the PPT calculated by the input PPG
and the reconstructed ECG and the PTT calculated by the
input PPG and the groundtruth ECG is high (ρ = 0.844),
which indicates the potential for clinical application.

The remainder of this paper is structured as follows. Sec-
tion II presents the related works including a review of
the literature as well as current commercial products. In
Section III, we describe the database and propose a novel
transformed attentional model for ECG reconstruction. We
introduce our test scenarios and present our experimental
results in Section IV. Finally, Section V concludes this paper.

II. RELATED WORKS

Several commercial products aim to provide ECG record-
ings, such as ECG watches like the Apple Watch Series 4/51

which require users to put their fingers on the watch to form
a closed circuit2 and cannot, therefore, be used for contin-
uous monitoring. ECG watches also require the additional
ECG electrodes, which are more expensive than the proposed
solution in this paper. On the other hand, QARDIOCORE3

1https://www.apple.com/apple-watch-series-5/
2https://youtu.be/lpXfQDK_uuw
3https://store.getqardio.com/products/qardiocore

and MAX-ECG-MONITOR4 are belt-like ECG monitors with
wearable electrodes that provide continuous monitoring. These
devices directly record the ECG signal as long as they are
correctly fitted, but the user has to put on a specific device
and they also cost a lot compared to PPG monitoring devices.
Furthermore, the electrodes of the products might also cause
skin irritation and discomfort during the recording. Another
wearable ECG product, KardiaMobile5, provides ECG mon-
itoring by electrodes on small pads which can be attached
to phones. However, KardiaMobile is unable to provide long-
term ECG monitoring due to requirement of putting the users’
fingers on the device to form a closed circuit for capturing the
electrical signal.

A recent line of research also aims to provide ECG by
wearable devices. For example, in [13], the authors present a
fully disposable single-lead ECG patch composed of Ag-AgCl
electrodes and components integrated on a flexible circuit
board. However, no evaluation of the quality of the ECG
recording was presented in the study and the ECG patch
only has a 7-day lifespan, which is not suitable for long-term
monitoring. [14] introduces a low-power wearable ECG mon-
itoring system which uses a belt-like device with electrodes
to form the closed circuit. However, this device also suffers
from not only the issues of inconvenience and discomfort
for users similar to commercial belt-like products, but also
ECG baseline drift due to respiration and movements. In [15],
a non-contact wearable wireless ECG system is presented
which can measure ECG signals over a textile-based interface
material between the skin and electrodes. The electrodes do
not have direct contact with the skin, thus preventing any skin
irritations or possible allergies. Yet, the authors indicate that
the electrodes need to be firmly integrated over the cloth to
reduce the displacement, and the electrostatic coupling of the
skin electrodes needs to be improved. Further, it is unfortunate
that there was no evaluation of the quality of ECG in [15].

In summary, Table I compares the five current technologies
for ECG monitoring: 1) finger-based ECG device, 2) ECG
watch, 3) belt-like ECG device, 4) standard ECG device,
and 5) the system we propose in this paper. A finger-based
ECG device (e.g., KardiaMobile) measures lead-I ECG using
a small pad with two electrodes, which is similar to an ECG
watch (e.g., Apple Watch Series 4/5). These two types of
ECG devices are affordable and are easy to use, but neither
of them can be used for long-term ECG monitoring since
they require users to put their fingers on the devices to form
closed circuits. On the other hand, belt-like ECG devices
(e.g., QARDIOCORE and MAX-ECG-MONITOR) provide
long-term ECG monitoring, but they generate non-standard
ECG types and require users to put on a special device
that is also more expensive. Standard ECG devices employ
the gold standard 12-lead ECG, but they are very expensive
and require a complicated installation, which makes them
unsuitable for daily monitoring. In contrast, our proposed
system does not require any closed circuit to detect electrical

4https://www.maximintegrated.com/en/products/
sensors/MAX-ECG-MONITOR.html

5https://www.alivecor.com/kardiamobile
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TABLE I
COMPARISON OF DIFFERENT APPROACHES FOR VITAL SIGNS.

ECG type Cost Accessibility Long-term Monitoring
Finger-based ECG Device Lead I Low High

ECG Watch Lead I Medium High
Belt-like ECG Device Unclassified Medium Medium X
Standard ECG Device Standard 12-lead High Poor

Ours Lead II Low High X

activity of the heart, which can be useful for long-term ECG
monitoring research since abnormal signals, such as those that
may occur in sleep, are rare and difficult to find if we can
only measure the ECG waves several times a day. Moreover,
our proposed method differs from current wearable single-
lead ECG systems insofar as our model learns to reconstruct
the standard lead II ECG, while current wearable single-
lead ECG devices have to deal with a certain amount of
disturbances and uninterpretable waveform, especially during
heart rate variability, and also when counting premature atrial
contraction and premature ventricular contraction, as has been
pointed out in the literature [16], [17].

There are few previous works aiming to reconstruct ECG
from PPG. In [18], the author exploits a machine-learning-
based feature selection approach to estimate the range of
ECG parameters using PPG features. Even though their system
achieves more than 90% accuracy in estimating ECG param-
eters on a benchmark hospital dataset, the lack of complete
ECG waveform reconstruction is an obstacle to the wide-
scale adoption of their system. [19] proposes method that can
reconstruct the whole ECG waveform by first aligning each
PPG cycle to ECG cycle and then mapping the discrete cosine
transform (DCT) coefficients of each PPG cycle to those of the
corresponding ECG cycle. However the cycle-wise alignment
and segmentation in the preprocessing stage lose temporal
information, such as pulse transit time and heart rate variation,
which are important clinical factors. Furthermore, the prepro-
cessing overhead restricts the capacity of their applications and
makes it difficult to build a real-time transformation.

III. PROPOSED ALGORITHM

A. Database Description

The public data in this study were provided by the Uni-
versity of Queensland (UQVSD dataset) [20] and come from
32 surgical patients who underwent anaesthesia at the Royal
Adelaide Hospital 55 hours of readings, or 4.5 GB data, which
are mainly of normal sinus rhythm). PPG and ECG are paired
data, which means that they are simultaneously measured for
transform learning. We filtered out the noisy data which may
be caused by instrumental and personal errors mostly at the
head and tail-end of the recordings and this also kept the
recording lengths balanced.

Moreover, to evaluate the generalizability of our method,
we also conducted experiments on another dataset, BIDMC
PPG and Respiration Dataset (BIDMC) [21], which contains
paired PPG and ECG measured from 53 critically-ill patients
(8-minute duration for each) during their hospital care at the
Beth Israel Deaconess Medical Centre. The waveforms of PPG

and ECG in this dataset are quite different from UQVSD set
because they are more noisy and abnormal. We mainly used
UQVSD dataset for evaluation but used BIDMC dataset to
study the robustness and generalizability of our algorithm in
Section IV-C.

B. Proposed Method
In this section, we present our method to reconstruct

the ECG directly from the raw PPG recordings. Let xi =
(xi,1, · · · , xi,t, · · · , xi,Ti

) and yi = (yi,1, · · · , yi,t, · · · , yi,Ti
)

respectively denote the PPG and ECG of user i with the total
number of time steps Ti, where xi,t and yi,t respectively
denote the PPG and ECG of user i at time t. Given a
dataset D of simultaneously recorded PPG and ECG with
N users, i.e., D = {(xi, yi)|1 ≤ i ≤ N}, we aim to
transform xi into the reconstructed ECG, denoted as ŷi, such
that ŷi is close to yi for all i. To reconstruct ECG from
PPG, we propose a new framework which adopts an encoder-
decoder architecture and is further improved by means of three
modules, i.e., the sequence transformer network, the attention
network and the proposed QRS complex-enhanced loss. Fig. 1
shows the flowchart of the proposed method. Specifically,
we adopted the encoder-decoder architecture which learns a
shared representation of PPG and ECG by encoding the input
PPG to a latent feature and by decoding from the latent feature
to construct the ECG. The encoder-decoder architecture can be
regarded as a dimension reduction process, and is thus more
robust to noises. Moreover, we employed one-dimensional
CNN for the encoder and decoder, instead of the RNN, due
to the efficiency and robustness of CNNs.

However, the CNN-based encoder-decoder architecture is
sensitive to the magnitude and phase of inputs. For example,
different PPG sensors may show different offsets, which
results in the difficulty of the ECG reconstruction. Inspired
by [22], we propose that possible alignment can be learned
directly from the inputs by the sequence transformer network,
denoted as STN(). Fig. 2 shows the architecture of the
sequence transformer network which exploits two learnable
parameters θ and φ to respectively transform the phase and
adjust the magnitude of the input. Specifically, the sequence
transformer network learns the temporal transformation using
θ, which transforms the original input xi,t and maps it to a
new temporal location in the output, i.e.,

t′ = θ

[
t
1

]
=
[
θ1 θ0

] [t
1

]
. (1)

In other words, (1) maps the original time point t to the
transformed time point t′ by θ1 and θ0, i.e., x̃i,t′ = xi,(θ1t+θ0).
Moreover, because t′ = θ1t+θ0 is not guaranteed to a positive
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Fig. 1. The architecture of the proposed method.

Fig. 2. The architecture of the Sequence Transformer Network.

integer (index), we used a linear sampling to extract the value
of the index by taking the average over the two neighbors from
the transformed points. For example, if t′ is 1.5, we calculate
x̃i,t′ by taking the average of xi,1 and xi,2. After the temporal
transformation, we derive the temporally transformed signal
x̃i, and further use the magnitude transformation φ to adjust
the magnitude. Let x̆i,t denote the magnitude-transformed
signal, which can be derived as follows.

x̆i,t = φ

[
x̃i,t
1

]
=
[
φ1 φ0

] [x̃i,t
1

]
. (2)

Equation (2) maps the magnitude of x̃i,t to x̆i,t at time t
with φ1 and φ0 such that the magnitude can be shifted and
scaled, i.e., x̆i,t = φ1x̃i,t + φ0. In summary, the temporal and
magnitude transformation can be regarded as the normalization
for the network, which significantly improves the performance
when the inputs are from different users or with the offsets
resulting from different sensors. The sequence transformer
network can be written as

x̆i = STN(xi). (3)

Afterward, the attention network, denoted as Attn(), is utilized
to learn the important part of the input PPG for reconstructing
the ECG. We used two fully-connected layers and a softmax
function as the activation function, which takes the inputs and
normalizes them into a probability distribution.6 The input x̆i
is first fed into the attention network to generate an attention
weight vector, denoted as α, which has the same dimension

6It is worth noting that the attention network used here is the inner-attention
that aims at finding the more important part of the inputs [23]. One alternative
is to use the self-attention network on the latent vector of the encoder output,
but then the number of learning parameters significantly increases, as does
the inference time.

as x̆i. After that, the attention weight vector is amplified by
the input size T because the original attention weight vector
is passed through the softmax function which represents the
probability of the importance, which may result in gradient
vanishing problem. Finally, the amplified attention weight
vector α is multiplied by the original inputs in an element-
wise manner to generate an attended signal, denoted as ai, in
the following.

ai = T ×Attn(x̆i)� x̆i, (4)

Finally, an encoder and a decoder, denoted as Encoder()
and Decoder() respectively, are utilized to transform ai and
together are called the transform network. We used a shallow
version of the generative network described in [24], which has
been proven to be powerful for speech denoising. Specifically
we use the same kernel size of 31, similar to [24], but with a
smaller number of filters and only 10 layers instead 22 layers
because the sampling rate is smaller, which results in a smaller
input size (T = 200). In the encoding stage, the input signals
are projected and compressed through a number of strided
convolutional layers followed by parametric rectified linear
units (PReLUs). Our transform network only decreases the
resolution twice using strided convolutions to 1

4 of the original
size (T = 200 to 50) as it has been proved to get clearer
outputs [25]. The decoding stage is the reversed version of the
encoding network by means of strided transposed convolutions
followed by PReLUs, i.e.,

ŷi = Decoder(Encoder(ai)). (5)

It is worth noting that one important feature of the proposed
method is its end-to-end training with the ability to deal with
raw input signals, which does not require complicated signal
processing and handcrafted hyper-parameters to complete the
reconstruction. To minimize the distance between the recon-
structed ECG and the groundtruth ECG, the L1 norm is chosen
as the loss function, as it is effective for generating sharper
signals than the L2 norm [24].

L1 =
∑
i∈N
|yi − ŷi|. (6)

In the following, we introduce the modified L1 loss for a better
reconstruction of the QRS complex.
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C. QRS Complex-Enhanced Loss
Previous work has shown that the QRS complex is more

important than P peaks and T peaks, which has been demon-
strated to be vital for further pathology studies, e.g., arrhythmic
events [26]. However, (6) does not emphasize the importance
of the QRS complex. Moreover, the magnitude of R peaks in
the reconstructed ECG tends to be smaller than the real value,
which leads to the missing detection of R peaks in the ECG
analysis. This is because the L1 loss significantly increases
when the positions of R peaks are slightly misaligned; the
magnitude, therefore, is made smaller to avoid these types
of large error. To overcome this issue, we designed a new
QRS complex-enhanced loss, LQRS , which encourages the
whole neural network to focus on the QRS complex area by an
non-normalized Gaussian weighting function using the R peak
index as the mean and a hyper-parameter σ as the variance7.
Let ci = (ci,1, · · · , ci,k, · · · , ci,Ki) denote the R peak index
for yi, where Ki represents the number of R peaks. The QRS
complex-enhanced loss is derived as follows.

LQRS =

N∑
i=1

T∑
t=1

|yi,t − ŷi,t|(1 + β

Ki∑
k=1

e−
(t− ci,k)2

2σ2
), (7)

where β is a hyper-parameter controlling the impact of the
Gaussian weighting function. In summary, if the output ŷi
fails to accurately reconstruct the groundtruth signals yi in R
peak region, the QRS complex-enhanced loss becomes greater.
To label R peaks for training, we used the state-of-the-art
method, the Hamilton Segmenter [27], which is introduced
by a public toolbox, namely BioSPPy [28], for biosignals
processing. The Hamilton Segmenter has proven to be a strong
classifier to detect the QRS complex with sensitivity of 93%
on the MIT/BIT and AHA databases, and it achieves high
performance for R peak detection in ECG.

IV. EXPERIMENT RESULTS

A. Experiment Setup
Since the goal is to reconstruct ECG from PPG, in the

preprocessing stage for both the UQVSD and BIDMC datasets,
a min-max scalar normalization is used to transform the
magnitude of both signals to [−1, 1], while two bandpass filters
are applied to ECG and PPG respectively to reduce noise. In
accordance with the sampling rate of 100 Hz (UQVSD dataset)
and 125 Hz (BIDMC dataset), the size of the sliding window
T is respectively set as 200 and 256 to serialize the data. The
model is trained for 300 epochs with Adam [29] at a learning
rate of 0.0001 and batch size of 256.

Here, we used the data augmentation to effectively learn
the transformation starting from any position of PPG. Specif-
ically, we randomly shifted the phases of the input PPG and
corresponding groundtruth of ECG to train our model within
[−10, 10]. Therefore, the training task can synthesize the ECG
starting from any position. The data augmentation mitigates
the boundary issue of the convolutional layer when the target
has R peaks at the boundaries, which also decreases the failure

7The setting of σ will be discussed later in Section IV-E.

probability for the Hamilton Segmenter at the boundaries due
to a lack of complete QRS complex. Finally, we used 10-fold
cross-validation and calculated the average results.

B. Evaluation Metrics

To evaluate the model performance, we employed the L1
loss of QRS complex area (L1QRS), the L1 loss of non-
QRS complex area (L1nQRS), the Normalized Mean Abso-
lute Error (NMAE) and the Normalized Root Mean Square
Error (NRMSE) as the metrics. The NMAE and NRMSE are
calculated as follows.

NMAE =

∑
i∈N |yi − ŷi|∑
i∈N |ŷi|

, (8)

NRMSE =

∑
i∈N |yi−ŷi|

2

N

maxi∈N yi −mini∈N yi
, (9)

NMAE and NRMSE are resistant to outliers and can be
viewed as overall performance. When identifying the QRS
complex areas, previous studies [30] show that the normal
intrinsicoid deflection (Q-R interval) is at most 50ms, and
the QRS duration is at most 120ms. Therefore, we labeled
the range within [-50ms, +70ms] at the R peak index as the
QRS complex area and the remaining area as the non-QRS
complex area. Moreover, we used three more metrics to show
the performance in the R peak area. Let Dtest denote the test
data, and ĉi,k denote the R peak position of ŷi that is the
closest to ci,k. The first metric is the Mean Location Error
(MLE) of the R peaks, which is measured the difference of
the R peak positions between the groundtruth ECG and the
reconstructed ECG. The MLE is calculated as follows.

MLE =
1

|Dtest|
1

Ki

∑
(xi,yi)∈Dtest

Ki∑
k=1

f(ci,k, ĉi,k), (10)

f(ci,k, ĉi,k) =

{
|ci,k − ĉi,k| if |ci,k − ĉi,k| < 10

10 otherwise.

Second, the Mean Magnitude Error (MME) of the R peaks is
proposed to measure the difference of the R peak magnitudes
between the groundtruth ECG and the reconstructed ECG. The
MME is formulated as follows.

MME =
1

|Dtest|
1

Ki

∑
(xi,yi)∈Dtest

Ki∑
k=1

|yi,ci,k − ŷi,ci,k |. (11)

These two metrics reflect the quality of the R peaks, which are
vital for detecting beat segments, or any other morphological
parameters of the ECG [27]. The MLE of the R peaks
indicates how accurate the R peaks are, and the MME of
the R peaks represents the magnitude error of the R peaks
in the reconstructed ECG. Moreover, the variance of both
MLE and MME is also calculated to show the stability of
the reconstructed ECG. Finally, we ran the R peak detection
algorithm for both the groundtruth and reconstructed ECG and
calculated the R peak failure rate (RFAIL) to evaluate the
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quality of QRS complex and the adaptability of the systems
as follows.

RFAIL =
failed R peak detection

all R peaks in groundtruth signals
. (12)

It is worth noting that if there is no R peak detected in the
reconstructed signals between -75ms and +75ms at the index
of the groundtruth R peak, it is considered a failed R peak
detection [31].

C. Quantitative Results

To show the improvement of our proposed method, we
compared the proposed model with the vanilla LSTM-based
transform network (Vanilla LSTM) used in [32] for the speech
synthesis8. Table II indicates that the proposed model outper-
forms the Vanilla LSTM for every metric. This is because
the CNN better captures the temporal patterns while both
the sequence transformer network and attention network help
the main transform network to reconstruct the ECG more
precisely. In addition, the non-QRS complex area has a much
lower L1 loss than the QRS complex area has; this is because
the waveform of the QRS complex area is more complicated
that of the non-QRS complex area that includes some steady
flatlines. The MLE of our model is 1.611 which is equal to
16.11ms error at the R peak index on average at a sampling
rate of 100Hz. The minor errors are acceptable for further
analysis such as pulse transit time (discussed below). More-
over, the magnitude of ECG generated by the Vanilla LSTM
is smaller at R peaks, which results in a high failure rate of R
peak detection. For the proposed model, 3890 R peaks in the
groundtruth ECG are successfully detected while 142 R peaks
are missing on average, thus resulting in a 3.67% R peak
failure rate. The proposed model significantly improves the
performance to get a lower R peak failure rate because of the
better quality of the QRS complex; we credit this improvement
to our implemented sequence transformer network, attention
network and QRS complex-enhanced loss.

From the efficiency evaluation of the proposed model,
Table III presents the average running time of reconstructing
the ECG per 1-sec PPG segment with different batch sizes
of the input PPG, as run on an Nvidia GTX1070 GPU. The
results shows that the proposed model requires 1.514ms to
2.054ms to transform a 1-sec PPG segment. As the batch size
increases, our model better utilizes the parallel computing of
the GPU since multiple reconstructions can be generated on a
batch of inputs. A larger batch size (100) can reduce almost
25% of the inference time compared to only one input at a
time. Compared to the Vanilla LSTM, the running time of
the proposed model is much faster with a larger batch size
since it can calculate the convolution of the same filter on
multiple locations in parallel, whereas the LSTM needs to be
processed sequentially, i.e., subsequent steps depend on the
previous ones.

Furthermore, we used the BIDMC dataset with the same
hyper-parameters to show the generalizability of our proposed

8The term “vanilla” means the original architecture without any modifica-
tion.

Fig. 3. The reconstructed ECG (red line) and the groundtruth ECG
(black line) waveform of 8 seconds in the UQVSD dataset.

method. The input size of the model was set to 256 due to the
higher sampling rate of 125 Hz of the BIDMC dataset. Also,
the total length of recordings in BIDMC are only 26% of the
total length of the recordings in UQVSD, which means that
the model was trained with fewer data. Table IV shows that
the performance to reconstruct the ECG in BIDMC is similar
to that for UQVSD. The higher R peak failure rate with lower
MLE and MME is probably due to the noisy data from the
critically-ill patients in the BIDMC dataset. This demonstrates
that our work can not only perform well with clean normal
sinus rhythm but also with more noisy and abnormal signals.

D. Qualitative Results
Fig. 3 illustrates 8-second segments of the reconstructed

results in the testing set, which shows that the proposed
model reconstructs the ECG (Fig. 3(a)) from the reference
PPG (Fig. 3(b)) with only a small difference. To investigate
different results of the magnitude of R peaks, we estimated
four different models (see Fig. 4). Specifically, we stacked
the groundtruth ECG and the reconstructed ECG aligned
by R peaks at the bottom right of each sub-figure. Our
proposed model shows the best performance for the R peak
reconstruction (Fig. 4(a)), while our model without the QRS
complex-enhanced loss shows a larger lose in the magnitude
as shown in Fig. 4(b). In addition, the Vanilla CNN-based
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TABLE II
THE PERFORMANCE COMPARISON FOR THE UQVID DATASET.

Model L1QRS L1nQRS MLE MME RFAIL NMAE NRMSE
Vanilla LSTM 0.3421 0.0688 1.927 0.343 6.66% 0.2741 0.1081

Ours 0.3390 0.0524 1.611 0.118 3.67% 0.2382 0.1070

TABLE III
COMPARISONS OF RUNNING TIME WITH DIFFERENT BATCH SIZES.

Model #Parameters 1 10 100
Vanilla LSTM 10.6M 1.513ms 1.559ms 2.502ms

Ours 10.8M 1.514ms 1.546ms 2.054ms

TABLE IV
THE PERFORMANCE COMPARISON ON THE UQVID AND BIDMC

DATASETS.

Dataset L1QRS L1nQRS MLE MME RFAIL

UQVSD 0.3390 0.0688 1.611 0.118 3.67%
BIDMC 0.3202 0.0386 1.667 0.108 4.37%

TABLE V
PERFORMANCES EVALUATION WITH DIFFERENT σ OF THE UQVSD

DATASET. NOTE THAT THE VALUE IN THE BRACKET REPRESENTS THE

VARIANCE.

σ MLE MME RFAIL

1 1.641 (5.121) 0.111 (0.015) 3.82%
3 1.665 (5.365) 0.172 (0.022) 4.27%
5 1.683 (5.417) 0.182 (0.023) 4.39%
7 1.656 (5.349) 0.190 (0.024) 4.31%

transform network performs competitively compared to our
model in Fig. 4(c), but the overall evaluation is worse than
that of our model (see the next section for a discussion).
Moreover, Fig. 4(d) shows that the Vanilla LSTM has the
worst performance since the magnitude of the R peaks is much
smaller than that of the groundtruth. In summary, it is easy for
other models to reconstruct the location of R peaks accurately,
but it is hard to calculate the magnitude of the R peaks as
correctly as the proposed model does.

E. Sensitivity Analysis and Ablation Study
Table V shows the performance of the proposed model with

different σ ranging from 1 to 7, and it is clear that σ = 1
yields the best R peak failure rate, MLE and MME. When σ
is too large, the performance worsens since a large σ takes
a long period into consideration. Moreover, Table VI lists the
performance indicators of the proposed model with different β
(0, 0.1, 0.5, 1, 10). The results indicate that β = 0.5 is the best

TABLE VI
PERFORMANCES EVALUATION WITH DIFFERENT β OF THE UQVSD

DATASET. NOTE THAT THE VALUE IN THE BRACKET REPRESENTS THE

VARIANCE.

β MLE MME RFAIL

0 1.690 (5.572) 0.209 (0.027) 5.05%
0.1 1.632 (5.086) 0.109 (0.014) 3.84%
0.5 1.616 (5.074) 0.109 (0.014) 3.75%
1 1.633 (5.224) 0.110 (0.015) 4.02%

10 1.630 (5.193) 0.111 (0.014) 4.05%

for the UQVID dataset, because it achieves the best MME,
MLE and also the lowest R peak failure rate. It is worth
noting that β is used to penalize the loss in the region of the
QRS complex, and β = 0 is the L1 loss and shows the worst
performance in terms of the R peak failure rate. According to
the sensitivity test, we recommend setting the default values of
σ and β to 1 and 0.5, respectively. After this, we investigated
the performance of different modules: sequence transformer
network, attention network, and QRS complex-enhanced loss.
Table VII shows the 8 different combinations of these three
modules. The findings indicate that the sequence transformer
network improves the model with the attention network and
the QRS complex-enhanced loss. If we disable the sequence
transformer network, the MLE and the variance of MLE and
MME increase, which leads to a high R peak failure rate (rows
1, 5). In contrast, if we enable it in the Vanilla model, only
MLE shows improvement and MME gets worse (rows 3, 4).
Moreover, the attention network is more important for the R
peak location than the R peak magnitude in the full model
(rows 1, 6), and it helps both MLE and MME compared to
the vanilla model (rows 4, 7). The attention network adds
the ability to the transform network for choosing important
samples to reconstruct the ECG.

Furthermore, Table VII shows that QRS complex-enhanced
loss plays an essential role in R peak magnitude, as it helps
every model to get a significantly low MME. Nonetheless,
the performance of QRS complex-enhanced loss is not good
enough for better R peak detection since both location and
magnitude are indispensable. In other words, combining all
modules is necessary to get low MLE and MME, as well
as a lower R peak failure rate. In summary, the sequence
transformer network and attention network are essential to
reconstruct R peaks at an accurate location, while the QRS
complex-enhanced loss is critical for the magnitude of R
peaks. All of them have an interaction effect to improve the
overall performance. Finally, from the evaluation of the impact
of data augmentation, Table VIII shows that the model with
data augmentation significantly improves for R peak location,
because the data augmentation offers opportunities to learn
from shifted samples with R peaks at the boundaries. There-
fore, data augmentation plays an important role in stabilizing
the training.

To show the generalizability of the proposed QRS complex-
enhanced loss, we apply it to Vanilla LSTM. Table IX
shows the results of different models with the proposed QRS
complex-enhanced loss, which manifest that the MLE, MME
and RFAIL in the model with QRS complex-enhanced loss
are significantly better than that in the model without QRS
complex-enhanced loss.
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TABLE VII
ABLATION STUDY IN TEST SET OF THE UQVID DATASET. NOTE THAT THE VALUE IN THE BRACKET REPRESENTS THE VARIANCE.

STN Attention LQRS MLE relative MLE MME relative MME RFAIL

X X X 1.611 (5.059) +0.00% 0.118 (0.016) +3.51% 3.67%
X X 1.620 (5.149) +0.56% 0.208 (0.028) +82.46% 4.49%
X 1.648 (5.325) +2.30% 0.221 (0.030) +93.86% 4.59%

1.690 (5.572) +4.90% 0.209 (0.027) +83.33% 5.05%
X X 1.624 (5.228) +0.81% 0.114 (0.016) +0.00% 3.75%

X X 1.631 (5.111) +1.24% 0.117 (0.016) +2.63% 4.04%
X 1.656 (5.522) +2.79% 0.210 (0.028) +84.21% 4.96%

X 1.657 (5.214) +2.86% 0.116 (0.016) +1.75% 3.91%

TABLE VIII
IMPROVEMENT BY DATA AUGMENTATION OF THE UQVSD DATASET.

NOTE THAT THE VALUE IN THE BRACKET REPRESENTS THE VARIANCE.

Model MLE MME RFAIL

Ours 1.611 (5.059) 0.118 (0.016) 3.67%
Ours w/o DA 1.828 (5.978) 0.121 (0.022) 4.45%

TABLE IX
EVALUATION OF COMPATIBILITY OF QRS COMPLEX-ENHANCED LOSS

TO VANILLA LSTM OF UQVSD DATASET.

Model MLE MME RFAIL

Vanilla LSTM 1.927 (6.544) 0.343 (0.035) 6.66%
w/ LQRS 1.745 (5.474) 0.133 (0.015) 3.91%

F. Possible Application

Our model is valuable in its potential for reconstructing
ECG because it is equipped with the direct transformation
from PPG to ECG without the need to measure both PPG
and ECG simultaneously, it is valuable to see the potential
of the reconstructed ECG from our model. One important
contribution of this study is that we preserve the temporal
information between PPG and ECG, so we can compute the
pulse transit time (PPT) as shown in Fig. 5, which is important
for blood pressure estimation [33] [34], respiratory effort [35],
heart rate [36] and other vital signs. Our proposed method has
the capability to retrieve the PPT from the input PPG and the
reconstructed ECG by measuring the time difference between
their peaks. Because the test samples are serialized by using
a sliding window, we calculated the PPT by considering two
consecutive test cases for the possible R peak that occurred in
the following test case. After that, we filtered out the PPT
values at the range [480ms, 800ms] according to previous
research [37], which pointed out that the time from the R
peak of ECG to the peak of PPG is 80% of the time of the
R-R interval of the ECG, and the normal resting heart rate
of adults is within the range of 60 and 100 beats per minute
of heart rate. From this we observed that, the detection of R
peaks contained 323 failed PPT among 5483 R peaks in total.9

As can be seen in Fig. 6, we used the Pearson correlation
coefficient of the PPT from the groundtruth and reconstructed
signals to evaluate our model. The results indicate that most of
the PPT fell between 550ms and 750ms, while the correlation
coefficient ρ was equal to 0.844, which indicates that the PPT
from the reconstructed ECG is similar to the groundtruth.

9The 5.89% failure rate is possibly due to the instability of the peak
detection algorithm, which can be further improved in the future.

The results also show that the proposed sequence transformer
network and attention network successfully reconstructed the
ECG, and that the QRS complex-enhanced loss is important
for R peak magnitude. This further demonstrates the potential
of our model to exploit further measurements for clinical
study. In other words, we only need to use the PPG to
reconstruct ECG and then extract meaningful information from
the reconstructed ECG, which has been well-studied.

V. CONCLUSION AND FUTURE WORK

In this paper, we proposed the first end-to-end learning
framework to directly transform PPG into ECG, thus leverag-
ing the advantages of both sides: PPG is economical and easily
accessible while ECG has well-studied base. The proposed
model consists of a sequence transformer network and an
attention network that help the main transform network to
accurately reconstruct ECG from only PPG. Also, a new
QRS complex-enhanced loss is introduced to make the model
more robust. We tested the proposed approach using two open
datasets (the University of Queensland Vital Signs Dataset and
the Beth Israel Deaconess Medical Centre Dataset). The exper-
iment results confirmed the effectiveness and generalizability
of the proposed deep learning approach, which successfully
reconstructs ECG from only PPG as input and has the ability
to make inferences in real-time. Additional findings show
the importance of each module in our model and provide a
direction to retrieve a better quality for the QRS complex.
In conclusion, this study suggests that deep learning can be
a potential and viable approach for the reconstruction of vital
signs from other easily accessible signals. In the future, we will
address the model’s current limitation of needing personally
paired PPG and ECG data for training by utilizing a new model
architecture and few-shot learning skills.
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