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ABSTRACT
Micro-expression recognition (MER) has recently become a popular
research topic due to its wide applications, e.g., movie rating and
recognizing the neurological disorder. By virtue of deep learning
techniques, the performance of MER has been significantly im-
proved and reached unprecedented results. This paper proposes
a novel architecture to mimic how the expressions are annotated.
Specifically, during the annotation process in several datasets, the
AU labels are first obtained with FACS, and the expression labels
are then decided based on the combinations of the AU labels. Mean-
while, these AU labels describe either the eyes or mouth movements
(mutually-exclusive). Following this idea, we design a dual-branch
structure with a new augmentation method to separately capture
the eyes and mouth features and teach the model what the gen-
eral expressions should be. Moreover, to adaptively fuse the area
features for different expressions, we propose Area Weighted Mod-
ule to assign different weights to each region. Additionally, we set
up an auxiliary task to align the AU similarity scores to help our
model capture facial patterns further with AU labels. The proposed
approach outperforms other state-of-the-art methods in terms of
accuracy on the CASME II and SAMM datasets. Moreover, we pro-
vide a new visualization approach to show the relationship between
the facial regions and AU features.

CCS CONCEPTS
• Computing methodologies → Computer vision; Image rep-
resentations.
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1 INTRODUCTION
Unlike facial expressions, micro expressions cannot be fabricated
and thus are able to reveal the true emotions of a person, which
is essential in emotional tasks, e.g., movie rating [25], deception
detection [23], and genuine emotions capturing and hiding [9].
Although recognizing the micro expression is valuable, the task is
challenging since the period of a micro expression lasts only 500ms
[39], which is approximately the time for a person to blink.

As such, several preprocessing methods have been proposed
to facilitate the recognition. Specifically, each micro-expression
sample is a sequence of frames, where the first frame of a micro
expression is annotated as the onset frame, and the climax frame
of an expression is labeled as the apex frame, and the end frame of
an expression is marked as the offset frame. These frames can be
regarded as the key to extracting useful features. A commonly-used
approach is to create a magnified frame for recognition by an onset
frame and an apex frame with motion magnification techniques.
These magnification techniques include Eulerian Motion Magnifica-
tion (EMM) [32] and Learning-BasedMotionMagnification (LBMM)
[22]. Another useful feature is Action Unit (AU), which describes
the movement of facial muscles. Since facial expressions are formed
through facial muscles, AUs can be applied to extract the facial
information or used for auxiliary tasks.

In addition, approaches to classifying the micro expressions
can be roughly classified into handcrafted-based, CNN-based, and
graph-basedmethods. On the one hand, handcrafted-basedmethods
utilize the handcrafted features for classification. These handcrafted
features include using Local Binary Patterns (LBP) to extract tex-
tures of an image on three orthogonal planes (LBP-TOP [41]) or
using Tensor Independent Color Space (TICS [30]) to obtain spatial,
temporal, and color information before recognizing the labels with
LBP. Other approaches, such as histogram of gradients (HOG) [6]
and histogram of optical flow (HOOF) [18], utilize the differences
between two frames to observe the changed areas.

On the other hand, CNN-based approaches extract the features
directly from an input. The extracted features from the model are
sent into linear layers to predict the results. A standard practice to
create a CNNmodel is to incorporate the dual-branch or even the tri-
branch design, i.e., usingmore than one branch to help amodel learn
variant features from multiple inputs. For instance, Khor et al. [10]
propose using dual-branch truncated AlexNet [12] to extract two
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different features created by an optical-flow frame, an optical-strain
frame, and a gray apex frame. By contrast, TSCNN [26] uses three-
stream convolutional networks to process three different features—
an apex frame, an optical-flow frame, and the grid blocks of the
apex frame. Additionally, STRCN-G [35] incorporates Recurrent
Convolutional Networks, which are used to extend the scale of
receptive fields, to extract the patterns from an optical-flow input.

On top of that, graph-basedmethods first extract the node embed-
dings or the image representations and enhance the node features
from the neighboring nodes to predict the micro expressions. For
example, MER-GCN [19] predicts the expressions by combining the
image features extracted by a 3D-CNN net with the AU features ob-
tained from the AU relations graph. Instead of training extra graph
neural networks, Graph-TCN [15] regards facial landmarks as the
nodes and uses the shape representations in LBMM as the node fea-
tures. Afterward, the graph features are sent into adapted temporal
convolutional networks [1] to extract points and edges informa-
tion. Following the same preprocessing in Graph-TCN, FMER [14]
create two branches for model to 1) extract image features through
transformer layers [4] and 2) learn the AU relations through graph
convolutional networks.

Although the existing methods provide different learning strate-
gies, they do not take into consideration how these expression
labels are given. In fact, datasets can be annotated through the
combination of AU labels [38], which are obtained from Facial Ac-
tion Coding System (FACS) [5]. These AU labels either represents
eyes or mouth movements but not both1. Additionally, using the
whole faces for training is not appropriate because the eyes and
mouth have different patterns, which should be captured by learn-
ing different filters separately. In order to address these issues, we
design a novel architecture with dual-branch learning by separat-
ing an input image into eyes and mouth areas. Furthermore, to
help model learn what the general expressions are, we propose an
augmentation method named Region Replacing by replacing the
eyes or mouth image with another same-class sample’s counterpart
to form diversified inputs. The two region inputs are then sent into
the same base layer and two different branch layers to extract eyes
and mouth features. Afterward, the extracted features are fed into
the proposed Area Weighted Module (AWM) to obtain the area
weights, which are used to determine the features importance be-
cause different expressions require different combinations. Finally,
the region features are summed up to predict the micro expressions
for simulating the AU combination stage.

In addition, we aim to merge the AU labels into our training
to obtain more facial information. However, the existing methods
may encounter the imbalanced AU problem by directly utilizing
the AU labels, which can undermine the whole training process.
To include AU labels into our training while preventing our model
from the imbalanced problem, we create a new AU-based task
called AU alignment to train our model on AU similarity scores by
Weighted Supervised Contrastive Learning. Finally, we propose a
new visualization approach called AU-CAM to observe how the AU
features are captured by ourmodel andwhich facial areas contribute
most to the AU features. Our contributions are summarized below:

1Only few of them, which are AU51∼58 that represent the head motions, include both
eyes and mouth.

• We design a dual-branch architecture with AU alignment
for micro-expression recognition based on how humans an-
notate the expressions by separating the eyes and mouth
regions at the beginning and fusing the features in the end.

• To better understand how our model captures the facial
features, we design AU-CAM to visualize how our model
connects the AU features with the facial regions.

2 RELATEDWORK
2.1 Micro-Expression Recognition
Micro-Expression Recognition is first proposed using the origi-
nal image patterns (handcrafted features) such as LBP-TOP [41],
LBP-SIP [31], TICS [30], optical flow [6, 18], and HOOF [18] to pre-
dict the expressions. Many researchers now turn to deep-learning
approaches, universally acknowledged as the powerful methods
in feature extraction. These approaches include using CNN archi-
tectures [10, 26, 28, 35] to find the essential patterns or building
graph neural networks [13–15, 19, 36] by utilizing the provided AU
labels in datasets to capture the subject’s facial motions. The above-
mentioned approaches, however, do not consider how the micro
expressions are annotated in the real world. Our proposed approach
simulates the annotation process by separating an input image into
two facial regions at the beginning and fusing the weighted region
features at the end.

2.2 Contrastive Learning
Contrastive learning (CL) is a subset of self-supervised learning,
which can be trained without annotated labels but can use data
itself as the ground truth. The core concept of CL is to attract the
same-class labels to cluster together and repel others away. The
distance between two samples is examined based on an similarity
score with the InfoNCE loss function [27]. Recently, more and more
research works have focused on solving different applications with
contrastive learning, e.g., AU prediction [37], multiple object track-
ing [7], and music representation [43]. Additionally, based on the
design of contrastive learning, Khosla et al. [11] propose Supervised
Contrastive Learning (SCL) by combining the ground-truth labels
into the objective function, achieving higher performance than all
the past supervised learning. Inspired by SCL, we develop a new
approach called Weighted SCL by providing different weights in
the objective function to include distance information to align the
AU similarly without facing the imbalanced AU problem.

2.3 Model Interpretability
Model interpretability help researchers know how a model gener-
ates the results. Hence, we can figure out whether a model makes
the right decision based on reasonable information. An early visu-
alized approach called Saliency Map measures the gradient of each
pixel to the result to know how strong a pixel can influence the
outcome. Recently, Class Activation Map (CAM) [42] has provided
an alternative visualization by computing the weighted sum of
the outputs in the last CNN layer. Other CAM-based approaches
[2, 24, 29] are proposed to tackle the CAM issues and can be used
outside the CNN structure. To visualize the regions that contribute
most to the final AU features but not how a model determines the



Mimicking the Annotation Process for Recognizing the Micro Expressions MM ’22, October 10–14, 2022, Lisboa, Portugal

ApexOnset Offset

Weighted SCL
Region Replacing

x
| Concatenation

Elementwise-multiplication

Amplified
On-A
Off-A

Eyes

Mouth

Amplified
On-A
Off-A

Eyes

Mouth

Base Layer

ℒ!"!_$%&⋯
⋯

AWM

x

x

|

ℒ'()*+_$%&

Eyes 
Layer

Mouth 
Layer

ApexOnset Offset ℒ!"!_$%&⋯
⋯

AWM

x

x

|

ℒ'()*+_$%&

Eyes 
Layer

Mouth 
Layer

ℒ,-./Base Layer

Figure 1: Our model architecture. The input images are first processed to obtain the input features and are separated into
eyes and mouth images. Next, the Region Replacing is included to replace the original mouth image with another same-class
sample’s mouth image (happiness in this example). Afterward, the region images are sent into the same base layer and different
branch layers to obtain region features. To fuse the features with different importance, AWM is used to obtain the weights. To
further extract the facial information, AU alignment is applied on concatenated features provided by AWM.
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Figure 2: Illustration of the preprocessing. The amplified
frame is first generated by applying motion magnification
to the onset and the apex frames. Afterward, we create the
On-A (Off-A) frame by computing the optical flow between
the amplified frame and the apex (offset) frame.

final results, we construct AU-CAM based on Grad-CAM [24] to
connect AU features and facial regions.

3 PROPOSED METHOD
Figure 1 illustrates the architecture of the proposed model. Specif-
ically, an input image is first preprocessed to obtain a magnified
motion and two optical-flow inputs. Next, these three inputs are
concatenated and are separated into the eyes and mouth areas
to follow the representations of AU labels. To avoid the spurious
correlation and to augment the data, we randomly replace the same-
class subjects’ region images to form new inputs to teach our model

recognize the general expressions. The input is then sent into the
dual-branch architecture to extract high-level feature maps. Af-
terward, instead of directly combining the features from the two
separated areas, we build Area Weighted Module (AWM) to learn
the weights for adaptively fusing two kinds of features. Moreover,
to ensure our model can extract useful facial features, we attach
an auxiliary task based on AUs, namely AU alignment, to train
our model further. Finally, the weighted features are summed up
to generate predicted labels for simulating the combination of AU
labels in the annotation process.

3.1 Feature Preprocessing
3.1.1 Input Features. Due to its hard-perceived changes, a raw
image sequence cannot provide sufficient features. Motion magnifi-
cation usually plays a vital role in data preprocessing to generate
discriminative features and can transform the micro expressions
into macro expressions. However, it is still challenging for a model
to locate the changed areas across the frames from magnified mo-
tions. On the other hand, while the optical flow is commonly-used
for its concise description of the movement of regions, it cannot
provide clear patterns to enhance the slight movement of a face.

To address the issues mentioned above, we combine these two
features since they complement each other. The combining features
contain stronger patterns for our model to distinguish different
micro expressions. Specifically, we adopt Learning-based Motion
Magnification [22] to create amplified frames. Next, we create an
On-A (Off-A) frame with the optical flow between an onset (offset)
and an amplified frame. We also try getting the On-A and Off-A
frames by replacing the amplified frame with the apex frame (dis-
cussed in Section 4.3). Finally, these three image frames-amplified
frame, On-A frame, and Off-A frame are concatenated to form a
new input feature. The detailed process is shown in Figure 2.
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Table 1: Details of the backbone structure.

Usage ResNet18 layers Input shape Output shape

Base
layer

Layer 1 (3, 224, 224) (64, 28, 28)
Layer 2 (64, 28, 28) (128, 14, 14)

Branch
layer

Layer 3 (128, 14, 14) (256, 7, 7)
Layer 4 (256, 7, 7) (512, 1)

3.1.2 Facial Separation. In this stage, an input image is separated
based on two regions-eyes and mouth. The eyes image is the upper-
half part of the image, and the rest half part is the mouth image. This
step is to simulate that AU labels either describe the eyes or mouth
movements but not both. Additionally, separating the images to
fit a dual-branch architecture helps our model obtain diversified
features due to different critical patterns of eyes and mouth images.

3.2 Region Replacing
Using a dual-branch architecture enables our model to learn to
extract variant features. However, training a model to obtain the
significant features requires considerable data, which could be lim-
ited inMER. Hence, we propose a new data augmentation technique
called Region Replacing (RR) to replace one’s region image with
the region image of another sample in the same class to facilitate
the learning of the general expressions.

The basic idea of RR is to replace a region image (eyes or mouth)
with another same-class sample’s region image to form a new input.
To simplify the implementation process, we simply replace the orig-
inal mouth image with another mouth image. This can be achieved
by following steps. Firstly, for each preprocessed input sample, we
randomly pick another sample with the same label in the dataset
and take its mouth image. Afterward, we combine the original eyes
image with the new mouth image to create a different input2. For
instance, in Figure 1, both inputs are labeled with happiness, and
both mouth images are replaced with each other’s mouth image to
form new inputs (we suppose both samples randomly select each
other in this scenario).

It is worth noting that using RR, the bias between different
subjects with the same class could be better eliminated. As such,
the model can learn more general features from different input
combinations without bringing external noise into our training
since the same expression has similar facial movements.

3.3 Feature Extraction
After separating an image into two parts, each region image is first
sent into the base layer and then to the branch layer. Both base
and branch layer are part of the ResNet18 model [8]. Moreover,
to encourage the model to extract diversified features, we include
the Shuffle Attention Module [40], which separates the features
into different groups and provides each feature within a group
with different spatial and channel weights. However, these weights
are shared between the groups, which can hinder our model to
extract variant features because we force each group to use the

2In the experiments, we apply RR with a 0.5 probability to randomly substitute the
combined frames for the original frames.

3-5. Features Fusing

• Applying different weight to different area features

• The weights are generated by the Area Weighted Module

• The output is obtained by the addition between two weighted features

• The backward gradients from AWM will not send back to ResNet layers
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Figure 3: Illustration of Area Weighted Module. The eyes
and mouth, in the beginning, represent the features obtained
from each branch layer.

same weights. Instead of sharing weights between the groups, we
make our model learn different weights for different groups.

During the extraction stage, both eyes and mouth images are
sent into the same base layer created by the first two ResNet18
layers to extract similar features. Later, the extracted features of the
eyes and mouth areas are passed into different branch layers made
by the last two ResNet18 layers. The details of the model structure
are listed in Table 1.

3.4 Merging the Region Features
To follow how the expressions are decided by the combination
of AU labels, the features are fed into the Area Weighted Module
(AWM) to provide each feature a different weight before predicting
the labels. The structure of AWM is shown in Figure 3. Specifically,
to obtain the weights for different area features, the outputs 𝑋𝑒𝑦𝑒𝑠

and 𝑋𝑚𝑜𝑢𝑡ℎ from the two branches are concatenated and are fed
into two linear layers. The features weight 𝑋𝑤𝑒𝑖𝑔ℎ𝑡 ∈ R1024 is
computed by the sigmoid function of the last layer output:

𝑋𝑤𝑒𝑖𝑔ℎ𝑡 = sigmoid(𝑊2 𝑓 (𝑊1 [𝑋𝑒𝑦𝑒𝑠 |𝑋𝑚𝑜𝑢𝑡ℎ] + 𝑏1) + 𝑏2) (1)

where | denotes the concatenation of two features, 𝑓 is the 𝑅𝑒𝐿𝑈
activation function,𝑊1 ∈ Rℎ×1024,𝑊2 ∈ R1024×ℎ are the weights of
the linear layers, 𝑏1, 𝑏2 are the bias terms, and ℎ is the dimension
of the hidden features. The fusing feature 𝑋𝐹 ∈ R1024 is obtained
by the element-wise product between the concatenated feature and
𝑋𝑤𝑒𝑖𝑔ℎ𝑡 . Finally, the weighted feature𝑋𝐹 is separated into new eyes
feature 𝑋𝑒𝑦𝑒𝑠_𝑤 ∈ R512 and new mouth feature 𝑋𝑚𝑜𝑢𝑡ℎ_𝑤 ∈ R512:

𝑋𝐹 = [𝑋𝑒𝑦𝑒𝑠 |𝑋𝑚𝑜𝑢𝑡ℎ] ⊗ 𝑋𝑤𝑒𝑖𝑔ℎ𝑡 (2)
𝑋𝑒𝑦𝑒𝑠_𝑤 , 𝑋𝑚𝑜𝑢𝑡ℎ_𝑤 = 𝑋𝐹 [: 512], 𝑋𝐹 [512 :] . (3)

Note that we exclude the softmax function here since a feature may
thus dominate the others due to the exponential operation. Next,
the weighted feature 𝑋𝐹 can be used to predict a micro-expression
label and to align the AU features.

3.5 AU Alignment
Action Units (AUs) are used to describe the movements of facial
muscles. In other words, a model should extract similar facial fea-
tures for samples having similar AU labels. This inspires us to
design an auxiliary task to align the features with AU labels.

A simple method for incorporating AU labels into training is to
use the samemodel but different heads for predicting AUs. However,
directly predicting AUs is likely to face an imbalanced issue. To
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3-4. AUs Alignments

• Using AU similarity to prevent the extreme data balancing

• Adopt weighted SCL to deal with overlapping labels
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Figure 4: The comparison between SCL and weighted SCL
(WSCL). Each sample is represented by a point, and the num-
ber above are the AU labels. Compared to SCL, WSCL han-
dle the overlapping AU labels well and clusters the samples
which have similar AU labels.

get rid of the imbalanced problem, we design a task based on AU
similarity. Using a similarity score only requires comparing features
and can avoid directly predicting the labels.

To train our model with similarity scores, we adopt Supervised
Contrastive Learning (SCL) [11], which pulls and pushes the fea-
tures at the class (AU) level. However, each sample can have mul-
tiple AU labels, and using SCL can only evaluate the similarity
score by 0 and 1 and still use the AU labels as the ground truth.
Therefore, using SCL cannot represent the relationship between the
overlapping AU labels and still encounters the imbalanced problem.
To solve the issues, we design Weighted SCL (WSCL) based on SCL
to provide higher flexibility. To fit an similarity score into [0, 1], we
add an additional weight in [0, 1] to describe the similarity score
between two different samples. The ground truth of the similarity
score𝑤𝑖 𝑗 between samples 𝑖 and 𝑗 is calculated as follows:

𝑤𝑖 𝑗 =
|𝐴𝑈𝑖 ∩𝐴𝑈 𝑗 |
|𝐴𝑈𝑖 ∪𝐴𝑈 𝑗 |

, (4)

where 𝐴𝑈𝑖 and 𝐴𝑈 𝑗 are the set of AUs for samples 𝑖 and 𝑗 , respec-
tively. Using an similarity score as the ground truth can also prevent
using the AU labels directly, which solves the imbalanced issue. To
ensure that the training speed is not affected by computing𝑤𝑖 𝑗 , all
the operations are vectorized. Figure 4 shows the comparison of
two methods. In terms of a region-replaced sample, we mix up the
AU labels from different samples to get the ground truth.

Finally, the loss function of WSCL is calculated as follows.

L𝑤𝑠𝑐𝑙 = −
𝑁∑︁
𝑖=1

1∑
𝑘 𝑤𝑖𝑘

𝑁∑︁
𝑗=1

1{𝑖≠𝑗 }𝑤𝑖 𝑗 log
𝑒𝑥𝑝 (𝑋 𝑖

𝐹
𝑋

𝑗

𝐹
/𝜏)∑𝑁

𝑘=1 𝑒𝑥𝑝 (𝑋
𝑖
𝐹
𝑋𝑘
𝐹
/𝜏)

,

(5)
where 𝑁 is the batch size, 𝑋 𝑖

𝐹
is the fusing feature in Eq. 2 of the

𝑖-th sample, and 𝜏 is the temperature parameter.

3.6 Classification
Before making a prediction, both 𝑋𝑒𝑦𝑒𝑠_𝑤 and 𝑋𝑚𝑜𝑢𝑡ℎ_𝑤 in Eq. 3
are sent into different double-layers fully-connected networks with
a softmax function at the end to obtain 𝑋𝑒𝑦𝑒𝑠_𝑐𝑙𝑠 and 𝑋𝑚𝑜𝑢𝑡ℎ_𝑐𝑙𝑠 .

Moreover, since the class labels are also imbalanced, i.e., the
number of class others is nearly four times that of class surprise
in CASME II and the number of class anger is almost five times
greater than that of class contempt in SAMM, some research in
facial-expression recognition adopts a weighted sampler to sam-
ple the same amount of data for different class labels within a

batch. This method can be regarded as bootstrapping but with dif-
ferent sample probabilities for each data. Therefore, a weighted
sampler might repeatedly sample out the same image. Due to the
duplicated sampling, using a weighted sampler is not suitable for
micro-expression recognition because the population of the train-
ing data is small, resulting in severely repeated sampling. Instead,
to utilize all the training data properly, we balance the training loss
with different class weights. A weight 𝑤𝑐 for class 𝑐 is computed
by:

𝑤𝑐 = max (𝑛1, 𝑛2, · · · , 𝑛𝑐 )/𝑛𝑐 , (6)

where 𝑛𝑘 is the number of the training data of class 𝑘 .
Finally, the classification loss is evaluated on the cross-entropy

for both 𝑋𝑒𝑦𝑒𝑠_𝑐𝑙𝑠 and 𝑋𝑚𝑜𝑢𝑡ℎ_𝑐𝑙𝑠 by:

L𝑐𝑙𝑠 = −
𝑁∑︁
𝑖

∑︁
𝑐

𝑤𝑐1{𝑦𝑖=𝑐 } (log(𝑋
𝑖
𝑒𝑦𝑒𝑠_𝑐𝑙𝑠 )𝑐 + log(𝑋 𝑖

𝑚𝑜𝑢𝑡ℎ_𝑐𝑙𝑠 )𝑐 ),

(7)
where 𝑁 is the number of the samples, 𝑦𝑖 is the ground truth of the
𝑖th sample, and (𝑋 𝑖

· )𝑐 is the 𝑐th value of the 𝑖th sample’s output.
The total loss function L𝑡𝑜𝑡𝑎𝑙 is:

L𝑡𝑜𝑡𝑎𝑙 = (1 − 𝜆)L𝑐𝑙𝑠 + 𝜆L𝑤𝑠𝑐𝑙 , (8)

where 𝜆 is the hyperparameter controlling the importance of each
training task. During the inference time, the 𝑖th predicted label is the
argument that gives the maximum value of 𝑋 𝑖

𝑒𝑦𝑒𝑠_𝑐𝑙𝑠 + 𝑋 𝑖
𝑚𝑜𝑢𝑡ℎ_𝑐𝑙𝑠 .

4 EXPERIMENTS
4.1 Datasets
Following previous works, we evaluate the performance of the
proposed model on five-class and three-class CASME II [38] and
SAMM [3]. The details of each dataset are listed in Table 2.

CASME II. CASME II [38] collects 249 samples from 26 subjects
at a frame rate of 200fps. Each image has a resolution of 640 × 480
pixels with around 280 × 340 pixels for the face area. There are five
categories in CASME II—disgust, happiness, repression, surprise, and
others. To have a fair comparison on three-class labels, we convert
the data labels into positive, negative, and surprise by omitting the
class others. The class happiness is changed into positive, and the
negative class is made up of disgust and repression, and the surprise
class remains unchanged.

SAMM. SAMM [16] collects 159 samples from 32 subjects at a
frame rate of 200fps. The image resolution is 2040 × 1088 pixels,
and the resolution of the face area is about 400 × 400 pixels. The five
classes of SAMM are contempt, happiness, anger, surprise, and others.
Likewise, for three-class comparison, we transform happiness into
positive and transform contempt, anger into negative. The class
others is removed, and the class surprise is not altered.

4.2 Evaluation Metrics
We employ Leave-One-Subject-Out (LOSO) cross-validation in all
of our experiments. LOSO ensures that we choose one subject for
testing in every training stage, and the rest of the subjects are used
for the training. In order to compare with other works, we use
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Table 2: Details of five-class and three-class labels in CASME II and SAMM.

Dataset Five Categories Three Categories

CASME II Disgust Happiness Repression Surprise Others Positive Negative Surprise
64 32 27 25 99 32 90 25

SAMM Contempt Happiness Anger Surprise Others Positive Negative Surprise
12 26 57 15 26 26 92 15

Table 3: Comparison with other state-of-the-art methods on
five-class and three-class CASME II and SAMM.

Models CASME II SAMM
UAR Acc UF1 UAR Acc UF1

Five Categories Comparison

SSSN [10] - 0.712 0.715 - 0.566 0.451
DSSN [10] - 0.708 0.730 - 0.574 0.464
STRCN-A [35] - 0.560 0.542 - 0.545 0.492
STRCN-G [35] - 0.803 0.747 - 0.786 0.741
TSCNN-I [26] - 0.741 0.733 - 0.635 0.607
TSCNN-II [26] - 0.810 0.807 - 0.718 0.694
AU-ICGAN [36] - 0.561 0.394 - 0.523 0.357
Graph-TCN [15] - 0.740 0.725 - 0.750 0.699
FMER [14] - 0.743 0.705 - 0.743 0.705

ours 0.850 0.833 0.827 0.751 0.794 0.758

Three Categories Comparison

CapsuleNet [28] 0.702 - 0.707 0.599 - 0.621
NMER [17] 0.821 - 0.829 0.715 - 0.775
MTM [34] - 0.756 0.701 - 0.741 0.736
AU-ICGAN [36] - 0.712 0.355 - 0.702 0.433
STD [33] - 0.799 0.759 - 0.767 0.764
FMER [14] 0.871 - 0.880 0.789 - 0.775

ours 0.924 0.932 0.925 0.805 0.865 0.816

accuracy and unweighted F1-Score (UF1) as the evaluation metrics:

𝐴𝑐𝑐 =

∑𝑆
𝑖 𝑇𝑃𝑖∑𝑆

𝑖 𝑇𝑃𝑖 + 𝐹𝑃𝑖
, (9)

𝑈𝐹1 =
1
𝐶

𝐶∑︁
𝑖

2 ×𝑇𝑃𝑖

2 ×𝑇𝑃𝑖 + 𝐹𝑃𝑖 + 𝐹𝑁𝑖
, (10)

where𝑇𝑃 is the true positive, 𝐹𝑃 is the false positive, 𝐹𝑁 is the false
negative, ·𝑖 is the metric for class 𝑖 ,𝐶 is the total number of classes,
and 𝑆 is the number of subjects. Additionally, as some other works
use unweighted average recall (UAR) as the evaluation metrics, we
also follow their settings to have a fair comparison:

𝑈𝐴𝑅 =
1
𝐶

𝐶∑︁
𝑖

𝑇𝑃𝑖

𝑛𝑖
, (11)

where 𝑛𝑖 is the number of samples of the class 𝑖 .

4.3 Implementation Details
We implement the model using the PyTorch framework and train
it on a Nvidia RTX 2080Ti GPU, having 12GB of memory. In terms

of our model settings, we used AdamW Optimizer [21] with a
learning rate of 3× 10−3 and Cosine Annealing scheduler [20] with
𝑇0 = 10 and 𝑇𝑚𝑢𝑙𝑡 = 2. For each LOSO training, we train our model
for 100 epochs with a batch size of 128. We set the amplification
factor to 6 and the hidden dimension ℎ for AWM (mentioned in
Section 3.4) to 1024 and 𝜆 to 0.3. To enhance the input diversity, we
use data augmentation techniques such as RandomHorizontalFlip,
RandomErasing, and RegionReplacing mentioned in Section 3.2.
We also found that 1) using the apex frame instead of the amplified
frame on CASME II and 2) using the amplified frame instead of
the apex frame on SAMM to create the On-A and Off-A frames
are better. One possible explanation is that CASME II has bigger
differences between onset–apex frames and offset–apex frames than
SAMM. Therefore, using an amplified frame to create optical flow
leads to an obvious distortion on CASME II (average magnitude: 18
→ 24), while increases the feature magnitude of SAMM (average
magnitude: 8→ 14).

4.4 Experiments on CASME II and SAMM
We evaluate our model performance with other state-of-the-art
methods on CASME II and SAMM. The results are shown in Table 3.
As regards five-class comparison, our model improves the accu-
racy and F1-score of 2.83% and 2.47% on CASME II and 1.02% and
2.29% on SAMM. Due to less categories in three-class comparison,
our improvements are apparent. We achieve 6.08% and 2.03% UAR
improvement on CASME II and SAMM, respectively. The inferior
performance of other methods may be caused by using whole facial
areas as input. As the micro expressions are implicit, other models
cannot decide which parts of the faces are more important. On top
of that, other methods may easily be affected by imbalanced data.
Our approaches can handle these imbalanced samples very well
compared with other methods by Region Replacing and the help of
AU Alignment.

4.5 Ablation Study
Here, we investigate the performance of our model components.
"sb" represents the single-branch architecture (ResNet18 in our
experiments) and "db" represents the dual-branch architecture pro-
posed in our work. "AU" and "AWM" are AU alignment and Area
Weighted Module. "all" indicates that both "AU" and "AWM" are
used. Finally, "RR" denotes Region Replacing. The results of different
experiments are shown in Table 4.

Region Replacing. We first remove RR from our training and ex-
amine the performances. The results indicate that the performances
on both datasets drop, especially on SAMM. A possible reason is
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Figure 5: Distribution of AU features plotted on the (left) CASME II dataset and (right) SAMM dataset. Each point in the figure
is a sample in the dataset. The color denotes the AU labels. We attach the legend on the top of the figures.

Table 4: Ablation study onmodel components. "sb" represents
single-branch and "db" indicates dual-branch.

Models CASME II SAMM
Acc UF1 Acc UF1

sb 0.8008 0.7921 0.7574 0.7218
sb + AU 0.8008 0.7871 0.7206 0.6560

db 0.8008 0.7828 0.7500 0.6925
db + AU 0.8171 0.7974 0.7574 0.7338
db + AWM 0.8252 0.7957 0.7721 0.7347

db + all w/o RR 0.8171 0.8188 0.7647 0.7019
db + all 0.8333 0.8267 0.7941 0.7582

that SAMM has fewer overlapped AUs between the samples. There-
fore, using RR provides more information to the SAMM dataset by
changing the facial features and AU labels. This phenomenon is
later shown and discussed in Section 4.6.1.

AU Alignment and AWM. Both AU alignment and AWM are de-
signed to boost the performances. The former is to train our model
with AU similarity scores to learn to capture the facial features, and
the latter is to merge the area features with different weights. From
the second part of Table 4, we observe that either AU alignment
or AWM achieves better results than not using any of them. The
final results reveal that using both components can further improve
the performances. However, using AU alignment lowers the per-
formances in the single-branch model. Our possible explanation is
that single-branch architecture cannot extract variant patterns as
dual-branch. Therefore, many facial patterns cannot be correctly
extracted from the inputs; even some of the eye features may be ex-
tracted with the mouth patterns and vice versa, which may confuse
the model3.

3We concatenate the outputs from branch layers to form the AU features if AWM is
removed and use the backbone outputs as the AU features in the single-branch model.

Dual-branch vs. Single-branch. Our proposed dual-branch archi-
tecture simulates the annotation process of the expressions and can
also extract variant features from both eyes and mouth. From the
upper part of Table 4, we first observe that single-branch approach
outperforms the dual-branch approach on the SAMM dataset and
has similar performance on the CASME II dataset without using AU
alignment. This is expected because the dual-branch model should
fuse the features with different weights, which different regions
contribute unequally to the results. On the contrary, adding AU
alignment to training makes the dual-branch model perform better
than the single-branch model. We speculate that adding AU fea-
tures provides the model with extra information to learn to extract
essential features from the eyes and mouth, which mitigates the
unweighted fusing problem.

4.6 Visualization
To better understand our model, we design two visualizations to
observe 1) the efficacy of AU alignment and 2) how our model
connects the AU features to the facial regions by distribution plot
and AU-CAM, respectively.

4.6.1 Feature Distribution Plot. We include WSCL to align the AU
features on similarity scores. Since the goal of WSCL is to pull the
features of the samples with similar AU labels together and keep
the features of different classes far away, we make distribution
plots with weighted features 𝑋𝐹 to show how AU features are
aligned. The features are reduced to two-dimension with the t-SNE
algorithm. Each point in Figure ?? represents a sample, and the
color of each point represents different AU labels. The details of
the labels are shown on the top of the distribution plot. For those
samples having "+" signs in the legend, it has two or more AU labels.
Also, we plot those similar AU labels with similar colors.

From the figure, we can observe that the points with the same
color are clustered together, which shows that our model inherits
the advantages from SCL. According to WSCL, a sample should be
closed to similar class samples. For instance, in Figure ??, the upper
cluster, most in purple and black, includes the labels of AU1 and
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5. AU-CAM

AU12 (Different subjects)

AU-CAM

Grad-CAM

AU15 (Same subject) AU14 (Different classes)

Figure 6: Comparison of AU-CAM and Grad-CAM in three scenarios. 1) Different subjects with the same AU label and emotion.
2) Different subjects with the same AU label and emotion. 3) Different subjects with the same AU label with different emotions.

AU2. Additionally, the points located at the half left part with the
colors blue and green consist of samples having AU4 and AU7. On
the other hand, in Figure ??, samples in the colors of dark purple and
black, placed at the left bottom, are made up of samples with AU1
and AU2, and most of the points in the upper right part, colored
in dark blue and bright purple, have AU4 and AU7. Interestingly,
although CASME II has more AU categories than SAMM, the AU la-
bels usually overlap between the samples in CASME II. By contrast,
each sample in SAMM has more inner-AU differences. This also
explains why the points in Figure ?? have less overlapping between
different categories than that in Figure ??, and the performance
differences with and without RR on SAMM is more prominent than
that on CASME II (Section 4.5).

4.6.2 AU-CAM. CAM [42] provides a visualization method to
which area interests the model most. Inspired by CAM, Grad-
CAM [24] uses the gradients to determine the weights for each
activation map. However, our goal is to observe how the AU fea-
tures are captured by our model instead of knowing how our
model decides the outputs. Therefore, we follow the way of finding
the weights in Grad-CAM but with the different backward pass. Let
𝐶𝑎𝑢−𝑐𝑎𝑚 be the results of AU-CAM:

𝐶𝑎𝑢−𝑐𝑎𝑚 = VerticalConcat(𝐶𝑒𝑦𝑒𝑠 ,𝐶𝑚𝑜𝑢𝑡ℎ), (12)

𝐶𝑏 = ReLU(
∑︁
𝑘

𝛼𝑘
𝑏
𝐴𝑘
𝑏
),where 𝛼𝑘

𝑏
=

𝜕𝑚𝑎𝑥 (𝑋𝑏_𝑤)
𝜕𝐴𝑘

𝑏

, (13)

where VerticalConcat is to vertically concatenate the eyes and the
mouth images,𝑏 is "eyes" or "mouth", and𝐴𝑘

𝑏
is the channel 𝑘 output

from the 𝑏 branch. We select the maximum of 𝑋 ·_𝑤 in Eq. 3 to find
out which AU feature contributes most to the facial regions.

Figure 6 shows the comparison between AU-CAM and Grad-
CAM. We plot three different scenarios to discuss the results of
our AU-CAM. Firstly, we select different subjects with the same
AU label (AU12) and the same class (happiness). Our AU-CAM
focuses on similar areas (eyes and mouth) among different subjects,
while Grad-CAM shows little connection between the samples.
Next, we provide the same-subject plot with the same emotion
(repression) and the same AU (AU15). Likewise, AU-CAM captures
similar areas in both eyes and mouth, but Grad-CAM shares only
the eyes’ information. Finally, we show the plots of the same-AU

samples (AU14) with different subjects and emotions (disgust and
others). Clearly, our AU-CAM highlights similar areas. In contrast,
Grad-CAM provides less information regarding AU features and
only shows how the expression labels are given.

We demonstrate how our AU-CAM captures the facial regions
with AU features from these examples. In fact, AU-CAM is not
limited to our works but can be extended to other applications. For
instance, the AU features obtained from the graph structure can
be used to backpropagate to obtain the AU-CAM. Besides, other
facial tasks using AUs, such as macro-expression recognition or
AU prediction, can also include AU-CAM to observe the interesting
regions.

5 CONCLUSIONS AND FUTUREWORK
We propose a novel approach to recognizing the micro expressions
by imitating the labeling strategy. We first introduce how we com-
bine both amplified frame and optical-flow frames to form an input.
Then, we present a dual-branch architecture for extracting the
features from the eyes and mouth separately with Region Replac-
ing. The region features are next combined with different weights
computed by AWM. To utilize the AUs but avoid the imbalanced
issue, we come up with Weighted SCL to align the AU features with
the similarity scores. Experiments on the CASME II and SAMM
datasets show that our model outperforms other state-of-the-art
approaches, proving that MER can benefit from mimicking the an-
notation process. Also, to visualize the relationship between facial
regions and AU features, we propose AU-CAM that can capture the
activated regions caused by the AU features. In the future, we plan
to incorporate graph structures into our dual-branch architecture
to extract only the facial landmark features instead of the whole
face for reducing the noise and boosting the inference speed.
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