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Figure 1. Our method outperforms the existing SOTAs in generating low-artifacts images while preserving garment details.

Abstract

In virtual try-on technology, achieving realistic fitting of
clothing on human subjects without sacrificing detail is a
significant challenge. Traditional approaches, especially
those using Generative Adversarial Networks (GANs), often
produce noticeable artifacts, while diffusion-based meth-
ods struggle with maintaining consistent texture and suffer
from high computational demands. To overcome these lim-
itations, we propose the Low-artifact High-resolution Vir-
tual Try-on via Diffusion-based Warp-and-Fuse Consistent
Texture (LA-VTON). This novel framework introduces Con-
ditional Texture Warping (CTW) and Conditional Texture
Fusing (CTF) modules. CTW improves warping stability
through simplified denoising steps, and CTF ensures texture
consistency and enhances computational efficiency, achiev-
ing inference times 17× faster than existing diffusion-based
methods. Experiments show that LA-VTON surpasses cur-
rent SOTA high-resolution virtual try-on methods in both
visual quality and efficiency, marking a significant advance-
ment in high-resolution virtual try-on and setting a new
standard in digital fashion realism.

1. Introduction

Virtual try-on technology aims to seamlessly integrate
clothing onto a target individual’s image. This task has been
propelled by rapid advancements in generative AI, leading
to a surge of research across various methodologies, from
image-based, single-pose methods to dynamic, multi-pose,
and video-based systems [1–7, 9, 11–13, 15, 16, 20–24].

There are two main streams in virtual try-on methods:
GAN-based and Diffusion-based virtual try-on. Regard-
ing GAN-based virtual try-on, VITON-HD [3] pioneered
high-resolution virtual try-on by introducing misalignment-
aware normalization to address texture discrepancies.
Moreover, HR-VITON [13] designed a dual-path method to
simultaneously synthesize warped clothes and human seg-
mentation, leading to structurally aligned clothes. Yet, both
VITON-HD and HR-VITON exhibit notable shortcomings
in properly warping clothing to fit the target body shapes,
as highlighted in Fig. 1. This issue arises from the substan-
tial spatial discrepancy between the original clothing items
and their intended placement on the human figure, making
it difficult to warp clothes effectively in one step. On the
diffusion front, models like LDM [18] and SDXL [17] have
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set benchmarks in image synthesis tasks, but often struggle
to generate consistent and detailed patterns in virtual try-
on, particularly when conditioned on image inputs rather
than textual prompts. Recent attempts to leverage diffusion
models for virtual try-on [9, 16, 24] have made progress but
continue to wrestle with rendering precise text and intricate
textures on the clothing, as illustrated in Figs. 1 and 5, espe-
cially synthesizing non-existent textures. Moreover, these
diffusion-based generators often suffer from lengthy infer-
ence times, especially for high-resolution outputs.

To address these challenges, we propose a Low-artifact
High-resolution Virtual Try-on via Diffusion-based Warp-
and-Fuse Consistent Texture (LA-VTON). Specifically, to
surmount the challenges of garment warping and texture
consistency in high-resolution virtual try-on, we first de-
sign the diffusion-based Conditional Texture Warping Mod-
ule (CTW), offering a novel alternative that breaks down
the complex warping task into a sequence of simpler, more
controlled denoising steps. This novel approach aims to
enhance texture stabilization, mitigating the risk of over-
distortion and ensuring more consistent patterns. Yet, de-
spite achieving more accurately aligned warped clothing,
the task of flawlessly integrating these textures within the
final synthesized image continues to present challenges.
As indicated in Fig. 1, even with structurally aligned gar-
ments, all baselines encounter texture fidelity difficulties.
VITON-HD and HR-VITON exhibit pattern degradation
and darkening. These phenomena indicate artifact col-
lapse.1 LaDI-VTON and DCI-VTON struggle to generate
consistent clothing textures. To solve these issues, we intro-
duce the Conditional Texture Fusing Module (CTF). This
module reconfigures the latent diffusion model to exclude
cross-attention, enabling direct high-resolution try-on syn-
thesis of high quality with 17× inference time acceleration.

Our contributions are summarized as follows. First, we
develop a 2-stage diffusion-based virtual try-on method in
high-resolution (1024× 768), which addresses GAN-based
try-on issues, i.e., warping misalignment and texture incon-
sistency, and diffusion-based try-on issues, i.e., texture in-
consistency and time-consuming. Second, we propose the
novel Conditional Texture Warping Module to ensure cloth-
ing warping stability, preventing misalignment and texture
over-distortion. Subsequently, we design the effective Con-
ditional Texture Fusing Module to seamlessly fuse human
and clothing textures. Finally, extensive experiments show
that our model significantly outperforms SOTAs, with at
least 36.25% improvement in terms of KID.

1This occurs when the model repeatedly introduces the same types of
errors or distortions across different outputs. These artifacts might mani-
fest as specific patterns, textures, or anomalies that are not present in the
training data and are consistently reproduced in the generated results, e.g.,
color darkening shown in Fig. 1 and Fig. 5.

Figure 2. Overview of our framework.

Figure 3. Architecture of Conditional Texture Warping Module.

2. Proposed Method: LA-VTON
Fig. 2 shows the the architecture of our proposed LA-

VTON, comprising two main components: the Conditional
Texture Warping Module and the Conditional Texture Fus-
ing Module, both rely on diffusion models as their core.
In the first module, an appearance flow map is generated
using an implicit diffusion model. This flow then enables
the transformation of the clothing image C into a warped
clothing image Cwarp aligned with human image I . Subse-
quently, the second module integrates the human informa-
tion with Cwarp to generate the try-on result. In the follow-
ing, we discuss the details of the LA-VTON framework.

2.1. Conditional Texture Warping Module

To address the perceptual issues present in the warping
methods of prior virtual try-on tasks [3, 13], we introduce
an innovative diffusion-based Conditional Texture Warping
Module (CTW), which more effectively aligns clothes with
the target body shape while preserving texture. Fig. 3 il-
lustrates the architecture of CTW, which focuses on two
main objectives: (i) warping clothes with consistent texture,
and (ii) predicting human segmentation to enhance warped
clothes alignment.
Diffusion-based Clothing Deformation. In this stage, we
train a conditional diffusion model pθ(x|I, C), where the
result x, representing the appearance flows, should accu-
rately warp clothing image C to fit human image I while
maintaining the inner texture consistency. To represent the
structure of human image I , we propose to utilize both
the human dense pose P (derived by [10]) and clothing-
agnostic human segmentation Sa (derived by [8]). The en-
coder Es first extracts features femb from the human struc-
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Figure 4. Architecture of Conditional Texture Fusing Module.

ture I∗ = [P, Sa] and the clothing C∗ = [C,Cmask], where
Cmask represents the mask of the in-shop clothes C.

To transmit rich structural information from the source
image to the model, we transfer femb through cross-
attention, and also concatenate I∗ with the denoised input
for better alignment. This allows the network to fully ex-
ploit the correspondences between the human and clothing
structure, thus resulting in low-distortion appearance flows.

As shown in Fig. 2, the diffusion process follows the ob-
jective proposed by [19]. To improve stability during train-
ing [14], we train our model to predict x0 instead of noise.
We adopt flow loss Lflow to learn x0 from paired I and C:

Lflow = ∥pθ(xt, t, I
∗, C∗)− x0∥ . (1)

Besides, to better align the clothing texture, clothes loss
Lclothes is applied to the warped clothes:

Lclothes = ∥Cwarp − Ic∥ , Cwarp = W(C, x̂0) (2)

where W represents the grid sampling from source image C
in terms of predicted flow x̂0, and Ic represents the clothing
region of the human image I .
Human Segmentation. We employ an additional U-Net to
predict human segmentation for two purposes: (i) enhanc-
ing the alignment between the warped clothes and the hu-
man body, and (ii) providing guidance for synthesizing try-
on results in the next stage. The model concatenates I∗ and
Cwarp as inputs to predict human segmentation Ŝ, where
we utilize focal loss Lseg as supervision.

Overall, the Conditional Texture Warping Module, in-
cluding a diffusion model, a texture encoder, and a segmen-
tation prediction U-Net, is trained in an end-to-end man-
ner. Therefore, the loss of predicted human segmentation
is propagated back to the diffusion model and makes the
warped clothes and the clothing channel of Ŝ synchronous
structurally. The overall loss function of CTW is:

LCTW = Lflow + λclothesLclothes + λsegLseg, (3)

where λclothes and λseg are hyperparameters.

2.2. Conditional Texture Fusing Module

After addressing the challenge of clothing alignment, we
further improve the visual quality of final try-on results.

Figure 5. Visual comparison with SOTA baselines.

As shown in Fig. 1, other methods fail to preserve the tex-
ture even in simple human posture. Accordingly, we pro-
pose the Conditional Texture Fusing Module to leverage the
strengths of diffusion models on synthesizing realistic im-
ages while addressing its limitations on texture consistency.

As depicted in Fig. 4, the human image I ∈ R3×H×W

is first encoded to the latent space z = E(I) ∈ R4×h×w

using a pre-trained autoencoder from [18] to accelerate the
learning process since the computational complexity of the
sampling from the true posterior distribution is reduced.
Besides, since the diffusion process is performed under la-
tent space, we employ a condition encoder to extract latent
features from Icond, which consists of clothing condition
Ccond and human segmentation Scond derived from CTW,
clothing-agnostic human image Ia and dense pose P , and
then concatenate to U-net to fuse target clothing features to
human. Thanks to the aligned clothing conditions from the
previous stage, we exclude the cross-attention layer in U-net
and takes the conditions only through concatenation. This
approach significantly reduces computational complexity.
At this stage, the model is learned to predict noise ϵ.

Lsimple = Ex0,t,ϵ[∥ϵ− ϵθ(zt, t, Icond)∥22]. (4)

3. Experiments
3.1. Experimental Setup

Dataset. We train and evaluate our proposed LA-VTON
on the VITON-HD dataset [3], which comprises 13,679
high-resolution (1024×768) frontal-view images of women
wearing tops, along with corresponding clothing items. The
dataset are split into 11,647/2,032 for training/testing pairs.
Baselines. We compare our proposed LA-VTON with SO-
TAs on VITON-HD dataset, which includes three GAN-
based methods: VITON-HD [3], HR-VITON [13] and
SAL-VTON [21], and two LDM-based approaches: LaDI-
VTON [16] and DCI-VTON [9]. We use the official codes
provided by the respective authors to obtain baseline results.
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3.2. Qualitative Results

As presented in Figs. 1 and 5, LA-VTON achieves visu-
ally convincing high-resolution try-on results, ensuring both
clothing warping stability and texture fusing consistency.

VITON-HD employs a TPS-based warping method, re-
sulting in significantly misaligned warped clothes, particu-
larly when trying on clothes with complex logos as shown in
the second row in Fig. 1. Meanwhile, HR-VITON devises
a dual-path method to simultaneously synthesize warped
clothes and human segmentation, leading to structurally
aligned clothes. On the other hand, SAL-VTON incorpo-
rates additional landmarks for precise warping. However,
as depicted in Fig. 5, they struggle to effectively maintain
the shape of the clothing. For instance, none of the base-
lines can preserve flared sleeves in the first row or tube tops
in the second row, as indicated by blue marks. In contrast,
our designed CTW enhances the warping process, ensuring
highly preserved clothes shape. Additionally, VITON-HD
and HR-VITON would destroy the clear color texture due
to artifact collapse as the third and fourth rows show.

Regarding LaDI-VTON and DCI-VTON, they often pro-
duce try-on results with inconsistent styles and textures, be-
cause they rely on the large pre-trained diffusion models as
their backbone for synthesis. The cross-attention mecha-
nism for global conditions input can lead to inconsistency
in garment details. In contrast, our proposed CTF can har-
ness the generative capabilities of the diffusion model while
ensuring the preservation of details in the warped clothes.

3.3. Quantitative Results

Our evaluation includes both objective metrics and a sub-
jective user study. The evaluation metrics include SSIM,
LPIPS, FID, and KID, which are commonly used in virtual
try-on tasks. The user study involved 30 participants who
were asked to evaluate 20 randomly generated results.

As demonstrated in Tab. 1, our proposed method outper-
forms SOTAs in terms of SSIM, FID, and KID, and achieves
a competitive score comparable to SAL-VTON in LPIPS.
Among GAN-based methods, SAL-VTON integrates addi-
tional landmarks to enhance warping, yielding lower LPIPS
scores along with notable FID scores. In contrast, we pro-
pose a try-on-specific diffusion model, CTW, for precise
warping, and the subsequent CTF incorporates the warped
garment to generate results of higher quality compared to
the SOTAs. The superior FID and KID scores achieved by
our approach substantiate this outcome. Furthermore, the
user study results show that our method achieve better try-
on accuracy and detail preservation from human perspec-
tives. On the other side, diffusion-based methods (LaDI-
VTON, DCI-VTON), exhibit strong generative capabilities.
However, they often face difficulties generating fine details,
making it challenging to preserve the clothing designs, re-
sulting in worse scores. Our designed CTF preserves the

Method Paired Unpaired Inference
time (s) User study↑

SSIM↑ LPIPS↓ FID↓ KID↓

G
A

N VITON-HD 0.866 0.134 12.27 0.347 0.37 3.67%
HR-VITON 0.878 0.115 11.91 0.334 0.85 17.33%
SAL-VTON 0.893 0.092 9.84 0.171 1.87 23.17%

D
iff

us
io

n LaDI-VTON 0.867 0.172 11.69 0.412 22 14.83%
DCI-VTON 0.879 0.160 11.28 0.360 53 17.17%
Ours 0.899 0.099 9.79 0.109 1.26 32.50%

NOTE: We describe the KID as a value multiplied by 100.

Table 1. Quantitative comparison for try-on results.

generative capabilities of the diffusion model while ensur-
ing the garment details, as reflected in LPIPS, FID, and
KID, which we discussed in the last part of this section.
Inference time comparison. In Tab. 1, LA-VTON shows
17x faster compared to SOTA diffusion-based methods and
similar inference times to GAN-based methods. This can
be attributed to the utilization of the diffusion process in
the latent space and the fewer cross-attention layers in our
model design, which significantly enhance our efficiency.
Comparative analysis of artifact reduction using FID
and KID. With the most significant cases between LaDI-
VTON and ours in Tab. 1, our method has 16.2% improve-
ment in FID but 73.5% improvement in KID. The large dif-
ference between FID and KID improvement is critical evi-
dence of our low-artifact performance. Firstly, FID is calcu-
lated based on the Gaussian distribution, giving high scores
when the generated results generally follow the distribution.
On the contrary, since KID is a non-parametric test, it tends
to be more robust and sensitive to detailed improvement,
e.g., artifacts, complex clothing patterns. In conclusion, the
marked disparity in improvements between FID and KID
not only underscores the effectiveness of our method in re-
ducing artifacts but also affirms the robustness and precision
in complex image generation tasks. Please refer to supple-
ments for additional experiments and vision results.

4. Conclusion
In this paper, we propose LA-VTON, addressing key chal-
lenges in visual quality: (i) clothing warping stability and
(ii) texture fusing with consistency. LA-VTON contains
two diffusion-based modules: (i) Conditional Texture Warp-
ing and (ii) Conditional Texture Fusing modules, where we
redesign the LDM to reduce visual artifacts and achieve
17× faster inference time. Extensive experiments reveal
that LA-VTON outperforms existing SOTAs and delivers
remarkable visual enhancements.

Acknowledgment
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5. Implementation Details
In both our CTW and CTF modules, the diffusion model
settings are implemented with T = 1000 steps and a fixed
variance schedule. We utilize the Adam optimizer with a
learning rate of 1e-5. The batch size is set to 32. Addition-
ally, in CTW, we set λclothes = 0.2, and λseg = 1. Images
are resized to a 256×192 in CTW, and the output flow maps
are up-resized then applied to the clothing images.

6. Additional Ablation Study
6.1. Ablation Study of CTW vs. CTF

We further qualitatively and quantitatively evaluate the ef-
fectiveness of our proposed Conditional Texture Warping
(CTW) and Conditional Texture Fusing (CTF) by ablation
study with GAN-based generators designed by HR-VITON
[13]. Specifically, regarding the ablation study of CTW,
we replace the CTW by the GAN-generated flow maps for
warping clothes. For the ablation study of CTF, we re-
place the CTF by the GAN-based try-on generator to syn-
thesize try-on results. The visual comparison Fig. 6 demon-
strate that our CTW better stabilizes the warped texture, pre-
venting clothing texture over-distortion (highlighted in red).
Besides, our CTF fuses textures with consistency prevent-
ing unmatched color and texture degradation (highlighted
in green). Moreover, Sec. 6.1 shows that our proposed LA-
VTON with CTW and CTF surpasses the two ablation mod-
els replaced by GAN-based generators respectively in all 4
evaluation metrics, outperforming the ablation models by
64.5% in terms of Kernel Inception Distance (KID).

Figure 6. Ablation study of CTW and CTF.

6.2. Sampling Strategy

By using DDIM sampling, the reverse process can be per-
formed in few steps. We analyze the effect of different sam-
pling steps in CTW module by the warped clothes. In Fig. 7,

Method Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓

X + CTF 0.851 0.136 12.06 0.329
CTW + Y 0.887 0.114 11.96 0.307
CTW + CTF (Ours) 0.899 0.099 9.80 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 2. Ablation study for CTW and CTF. X represents GAN-
generated flow maps and Y is the GAN-based try-on generator.

we overlay the warped clothes onto the target person image
to compare their alignment. The results manifest that using
DDIM with step = 1 provides a rough alignment of the
clothes with the person’s shape. However, the patterns on
the clothes appear distorted and cannot be preserved well.
On the other hand, the results obtained with step = 5 and
10 preserve the clothing features well, and most areas are
aligned accurately. Notably, the alignment is better for the
cuffs in step size 10. To evaluate the performance of dif-
ferent steps, we calculated the IoU between the mask of
warped clothes and the clothes region of the human image.
The IoU for step sizes of 1, 5, 10, and 50 are 80.1%, 80.6%,
81.6%, and 82.1%, respectively. The IoU improves with an
increase in DDIM steps, suggesting better alignment of de-
tails in the generated images. However, the improvements
in IoU tend to plateau when the step size becomes larger, as
the increase in steps may not result in significant quality im-
provements. Therefore, to strike a balance between image
quality and computational efficiency, we set the number of
steps to 10. This configuration allows the proposed method
to produce satisfactory results while maintaining reasonable
computational demands.

Figure 7. Comparison of different sampling steps.
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Figure 8. Ablation study on the effect of architecture design. Lclothes helps align the warped clothes with the shape of the human body,
while Lseg ensures the generated human segmentation corresponds to the warped clothes, resulting in good generation results. Both losses
can improve the alignment of the warped results.

6.3. Training Objective

We conducted experiments to investigate the effectiveness
of the training objective in CTW for clothing alignment in
VITON-HD dataset. The results are summarized in Fig. 8
and Sec. 6.3. Firstly, we experimented with the objective
of predicting noise ϵ instead of x0. During training on
higher-resolution images, the model predicting noise ϵ en-
countered stability issues and was prone to collapse, a phe-
nomenon also reported in [14]. In contrast, training the
model to predict x0 maintained higher stability and better
alignment in high resolutions. Therefore, we compared the
model’s performance of predicting noise ϵ at a lower reso-
lution, which was 4× lower than our full model prediction.
While it worked adequately, it led to obvious misalignment
on arms, as shown in Fig. 8. Moreover, we experimented
with different loss functions to assess their impact on cloth-
ing alignment, as illustrated in Fig. 8. In addition, Sec. 6.3
presents the quantitative results of using different training
losses. Specifically, training with only Lflow resulted in
rough alignment of the clothes, while adding Lclothes and
Lseg significantly improved all metric scores. Using both
losses together achieved the best performance in terms of
clothing alignment and overall image quality.

Method Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓
Ours (predict ϵ) 0.892 0.137 11.91 0.332
Ours (w/o Lseg , Lclothes) 0.893 0.134 11.31 0.272
Ours (w/o Lclothes) 0.892 0.137 11.42 0.281
Ours (w/o Lseg) 0.892 0.135 11.40 0.290
Ours 0.899 0.099 9.79 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 3. Quantitative comparison for different training objectives.

6.4. Sensitivity Analysis for Loss Weights

For the hyper-parameters λclothes and λseg corresponding
to the designed losses in our CTW module, we conducted
experiments involving a multiplication factor of 100 to as-
sess their sensitivity. The quantitative results are illustrated
in Sec. 6.4, while the qualitative outcomes are presented
in Fig. 9. The results reveal that when λclothes is exces-
sively large, distortion in clothing occurs. This distortion
arises due to pixel-wise loss causing significant gradients
in the model, making it challenging for the model to learn
the original distribution of flow, and failing to preserve the
original texture. On the other hand, if λseg is too large, the
model focuses more on generating the segmentation map
and fails to learn the accurate warping, and further misses
the alignment between warped clothes and the segmentation
map. Hence, we set λseg = 1 and λclothes = 0.2 for our
full model to have the best quality.

λclothes λseg
Paired Unpaired

SSIM↑ LPIPS↓ FID↓ KID↓
20 1 0.838 0.156 11.89 0.258
0.2 100 0.843 0.139 10.43 0.160
0.2 1 0.899 0.099 9.79 0.109

NOTE: We describe the KID as a value multiplied by 100.

Table 4. Quantitative comparison for different loss weights.

6.5. Training of Conditional Texture Fusing module

In Conditional Texture Fusing module, we employed a
scheme where the clothing image is multiplied by the
clothes masks to help the model address the issue of mis-
alignment in warped clothes. In the full model, the scheme
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Figure 9. Comparison of different λ settings in CTW module.

of Ccond is derived as follows:

Train : Ccond = Ic ⊙W(Cmask, x̂0), (5)

Test : Ccond = Cwarp ⊙ Ŝc, (6)

To demonstrate the effectiveness of this masking scheme,
we conducted experiments without this scheme, i.e.,

Train : Ccond = Ic, (7)
Test : Ccond = Cwarp. (8)

As shown in Fig. 10, when the model is trained and tested
without the mask, the generated clothing appears artifacts
along the edges (the red circle) whenever the clothes are
slightly misaligned. Additionally, the body parts of the gen-
erated results are also unnaturally occluded (the blue circle)
when the clothes go beyond the intended region.

7. Occlusion Results
Fig. 11 illustrates cases of occlusion, demonstrating that our
model is capable of generating good results even when the
arms obstruct the clothing.

8. Failure Cases
Failure cases of our model are usually caused by complex
poses in target human images or incorrect clothing masks.
To illustrate the failure examples, we provide the following:
Complex Pose. As Fig. 12 shows, artifacts occur when the
target person is in complex poses. When there are large
movements in the input person, such as raising their hands
above their heads, our CTW module tends to produce incor-
rect warping, leading to artifacts in the output image. The
reason is that complex poses are very rare in the VITON-
HD dataset, making it difficult for the model to learn effec-
tively with limited data. We will tackle this issue in future
developments.

Figure 10. Comparison of different Ccond in CTF module. The
column of w/o masking is the results of using only Ic and Cwarp

as Ccond in training and inference time.

Figure 11. Occlusion cases.

Figure 12. Failure cases of complex poses.

Incorrect Mask. As Fig. 13 shows, when predicted cloth-
ing masks are failed, it leads to failure try-on results. The
clothing mask in the data may sometimes be inaccurate, es-
pecially when the color of the clothes is too similar to the
background. Incorrect clothing masks make it hard for the
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model to accurately recognize the shape of the clothes, lead-
ing to erroneous warping and incorrect generation results.
HR-VITON mentions the use of a discriminator to handle
such cases, but this problem has not been fundamentally re-
solved. We also look forward to optimizing and resolving
this issue in future method designs.

Figure 13. Failure cases of incorrect masks.

9. Additional Qualitative results
We provide additional qualitative comparisons in Figs. 14
to 19. Fig. 14 shows that our method outperforms others in
generating low artifact results even in simple clothing types,
e.g., plain color thin strap vests, T-shirts, and shirts. Mean-
while, Figs. 15 to 17 demonstrate our method’s efficacy in
preserving clothing shape with complex decorations, e.g.,
puff sleeves, cross-strap vests, turtleneck shirts, etc. Specif-
ically, the example in Fig. 15 highlights our ability to pre-
serve the special shape of sleeves, e.g., puff sleeves, shoul-
der pad on T-shirt, and text/line design on side arm. Fig. 16
includes side bow tie design and cross-strap vests, which are
rare clothing styles in the VITON-HD dataset. Our method
accurately generates try-on results for these special designs.
Fig. 17 demonstrates the performance on preserving pat-
terns around the neckline and bottom of clothes. Addition-
ally, Figs. 18 and 19 showcase the outperforming texture-
preserving capabilities of our method.
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Figure 14. Additional comparison with state-of-the-art try-on methods. Our method outperforms others in generating low artifact results
even in simple clothing types, e.g., plain color thin strap vests, T-shirts, and shirts.
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Figure 15. Additional comparison with state-of-the-art try-on methods. It highlights our ability to preserve the special shape of sleeves,
e.g., puff sleeves, shoulder pad on T-shirt, and text/line design on side arm.
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Figure 16. Additional comparison with state-of-the-art try-on methods. Our method accurately generates try-on results for side bow tie
designs, cross-strap vests, which are rare clothing styles in the VITON-HD dataset.
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Figure 17. Additional comparison with state-of-the-art try-on methods. It demonstrates the performance on preserving patterns around the
neckline and bottom of clothes.
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Figure 18. Additional comparison with state-of-the-art try-on methods. Our method showcase the outperforming texture-preserving
capabilities.
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Figure 19. Additional comparison with state-of-the-art try-on methods. Our method showcase the outperforming texture-preserving
capabilities.
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