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"Change the hair 
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Fig. 1: Comparisons of iterative editing methods: The baseline method, ip2p [1] (top row), introduces noticeable structural
distortions during complex edits such as “Put on a scarf” and “Add a beard to the face.” In contrast, our approach, IterDiff
(bottom row), maintains natural and consistent transformations across all depicted changes, demonstrating enhanced coherence
and realism in the edits.

ABSTRACT
The rise of generative models has transformed image gen-
eration and editing, enabling high-quality, user-guided out-
puts. Iterative face editing, essential for applications like vir-
tual makeup and entertainment, allows users to refine im-
ages progressively. However, this process often leads to arti-
fact accumulation, semantic inconsistency, and quality degra-
dation over multiple edits. Existing methods, while effec-
tive in single-step modifications, struggle with sequential ed-
its. To robustly maintain fidelity and consistency in itera-
tive face editing across multiple sessions, we propose Iter-
Diff, a training-free framework leveraging diffusion models
with a novel Training-Free Feature Preservation (TF2P) ap-
proach to tackle these challenges by storing and retrieving
key-value (KV) pairs from self-attention layers. Addition-
ally, we further improve its efficiency and feasibility by Ef-
ficient CLIP-guided Memory Bank (ECMB). Experiments on
the proposed benchmark show that IterDiff excels in prompt
alignment, content consistency, and image quality, providing
a robust solution for iterative facial attribute editing. Code,
dataset and supplementary materials are available at https:

//github.com/david20571015/IterDiff.

Index Terms— Diffusion Model, Image Editing

1. INTRODUCTION

Image editing is a pivotal component of modern digital work-
flows, enabling users to manipulate and refine images for di-
verse applications. While recent breakthroughs in genera-
tive models, particularly diffusion models [2, 3], have sig-
nificantly advanced single-step editing, real-world scenarios
often require iterative editing. In this paradigm, images un-
dergo sequential refinements—akin to professional tools such
as Photoshop-should still achieve high fidelity. Face edit-
ing exemplifies the practical importance of this approach: it
is broadly useful in areas like digital entertainment and vir-
tual try-ons, yet remains highly sensitive to errors, as even
subtle inconsistencies can adversely affect identity, structural
integrity, and overall realism. For instance, consider Fig. 1
where iterative editing can distort the image structure or mod-
ify attributes that are unrelated to the targeted changes.

To facilitate the iterative editing, a recent line of studies
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has been proposed. [4] first predicts a structured semantic
panel for synthesizing the final image, containing object-level
attributes such as position, size, and color. This design en-
ables iterative editing by modifying the semantic panel incre-
mentally that users can add or adjust specific objects using
prompts while preserving the rest of the scene. However,
it requires extensive fine-tuning of diffusion models, lead-
ing to significant computational overhead. Another approach
employs mask-based editing in the latent space [5], offering
spatially targeted modifications through multi-granular con-
trol. However, mask-based editing often becomes ineffective
for face editing since the target frequently involves the entire
face, making the mask redundant.

To maintain essential information across iterative ed-
its, we draw inspiration from recent studies [6, 7], which
demonstrate that key-value (KV) pairs extracted from the
self-attention layers of diffusion models can capture detailed
semantic and spatial features. While prior works have im-
proved facial detail preservation in face editing [8, 9], they
focus on single-step modifications and overlook the chal-
lenges of distribution shift and information loss in iterative
edits. In response, we propose the Training-Free Feature
Preservation (TF2P) approach, utilizing a memory bank to
store and retrieve KV pairs. This enables the reuse of per-
tinent features in subsequent edits without compromising
new modifications. Additionally, to reduce memory over-
head and mitigate diminishing effects of edits, we introduce
the the Efficient CLIP-guided Memory Bank (ECMB) strat-
egy. This method employs CLIP similarity scores to selec-
tively preserve crucial information, minimizing interference
with ongoing edits. Moreover, recognizing the lack of pub-
lic datasets for evaluating iterative face editing, we present
IterEditBench, a dedicated benchmark specifically designed
for this purpose. Overall, our main contributions can be
summarized as follows.

• We propose a novel diffusion-based Training-Free Fea-
ture Preservation (TF2P) that enhances the consistency
and quality of iterative face editing while maintaining
editing capabilities.

• Moreover, we introduce the Efficient CLIP-guided
Memory Bank (ECMB) that stores and employs the
most important features in each editing based on CLIP
similarity to resolve the challenge of memory cost.

• We build a new benchmark, IterEditBench, of iterative
face editing and demonstrate the effectiveness of our
method, achieving state-of-the-art performance.

2. PRELIMINARY

2.1. Related Work

Recent advancements in text-to-image (T2I) models [3, 10,
11] have catalyzed the development of innovative image edit-

ing techniques across style transfer [12, 13], shape modifica-
tion [7, 14], and attribute alteration [1, 15, 16, 17]. In the
context of iterative image editing, traditional single-step tools
such as InstructPix2Pix [1] struggle with consistency and ar-
tifact accumulation over successive edits. While approaches
like EMILIE [5] and Ranni [4] offer improvements using la-
tent iteration and semantic panels, they face challenges in
granularity and efficiency. In contrast, the proposed TF2P ap-
proach and ECMB strategy to dynamically manage semantic
features and maintain edit quality.

2.2. Problem Formulation

Iterative face editing requires a model to perform sequen-
tial modifications to an image based on step-by-step in-
structions. The goal is to ensure that each modification
aligns with the user’s input while preserving the seman-
tic and structural consistency of the image across edits.
Formally, given an initial image I0, a sequence of editing
instructions {c1text, c2text, . . . , cntext}, and a pre-trained diffu-
sion model, the task is to iteratively generate edited images
{I1, I2, . . . , In}, where Ii is the output of applying citext to
Ii−1. Each edit must maintain consistency with prior outputs
while accurately reflecting the current instruction.

3. ITERDIFF FRAMEWORK

Fig. 2(a) presents the overview of the proposed IterDiff
framework, which builds upon the pre-trained InstructPix2Pix
model [1] and leverages a carefully designed Training-Free
Feature Preservation (TF2P) approach to dynamically store
and retrieve semantic features. Additionally, the proposed
Efficient CLIP-guided Memory Bank (ECMB) strategy prior-
itizes relevant features, ensuring consistency and scalability
across editing iterations.

3.1. Training-Free Feature Preservation

InstructPix2Pix [1] augments the LDM framework by extend-
ing the input layer to accept an additional image condition
cimage that is encoded from the input image I via E , allow-
ing it to perform text-guided edits on existing images. To-
gether with the editing instruction ctext, this additional con-
dition guides the generation of the edited latent z0, which is
decoded into the final edited image by the decoder D.

Build upon InstructPix2Pix, to address the challenges of
iterative face editing due to the accumulation of artifacts and
loss of content fidelity over multiple iterations, we introduce
Training-Free Feature Preservation (TF2P) approach. Previ-
ous work shown that key-value (KV) pairs extracted from the
self-attention layers of diffusion models can capture detailed
semantic and spatial features. Therefore, we propose to store
the KV pairs in a Memory BankM as follows:

Mi ←Mi−1 ∪ {eit | t ∈ T }, (1)
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Fig. 2: IterDiff framework. (a) An overview of the iterative editing process, highlighting how the Memory Bank is integrated
into the framework and where saving (blue arrows) and reading (red arrows) are applied. (b) Efficient CLIP-Guided Memory
Bank mechanism, where key-value pairs are prioritized based on CLIP similarity before being stored in the Memory Bank.

where M0 is initialized as a empty set, i ≥ 1 and denotes
the i-th edit, eit = (Ki

t , V
i
t ) represents the entry consisting

of the key Ki
t and value V i

t at timestep t, and T denotes all
timesteps {0, 1, . . . , T}.

Equipped with the memory bank, the fidelity and consis-
tency of iterative face editing can be enhanced. By dynami-
cally utilizing the Memory BankM to recall and apply rele-
vant KV pairs for each edit, we reduce the introduction of un-
wanted artifacts and the degradation of content integrity that
typically occur with repeated modifications.

3.2. Efficient CLIP-Guided Memory Bank

Although TF2P can better maintain the image fidelity, it re-
sults in excessive memory consumption and introduces redun-
dant information. To this end, IterDiff integrates the Efficient
CLIP-Guided Memory Bank to retain only the most relevant
pairs, ensuring scalability and efficiency without compromis-
ing semantic consistency. Specifically, Fig. 2(b) illustrates
the proposed ECMB, which contains two complementary op-
erations: Saving and Reading. Saving focuses on updating
the Memory Bank Mi during the i-th edit while Reading
retrieves relevant key-value pairs during the (i + 1)-th edit.
This structure ensures that semantic features are effectively
retained and reused across iterations. Below, we detail the
Saving and Reading processes.
Saving. Fig. 2(b) illustrates how the Memory BankM is up-
dated during the saving phase. ECMB prioritizes KV pairs
based on their semantic relevance to the current editing in-
struction, measured by using CLIP similarity [18]. Specifi-

cally, at timestep t, the importance score of the KV pair of the
i-th editing, denoted by scoreit, is computed by:

scoreit = CLIP(D(ẑit), citext), (2)

where ẑit represents the estimation of the final noise-free la-
tent zi0 at timestep t. During the denoising process, the diffu-
sion model predicts this latent directly from the current input
zit. Afterward, the noise scheduler uses ẑit to compute zit−1,
which serves as the input for the next step.

After calculating scores of ẑit for all timesteps t ∈ [T −
s, T ], where s is a hyper-parameter for determining the range
where ECMB is applied1, the top-k pairs are selected:

T̂ i = argtopK({scoreiT−s, . . . , score
i
T }, k). (3)

Here, argtopK(X , k) is the function returning the indices of
the k largest elements in X . The corresponding KV pairs for
these indices are then either stored or updated in the memory
bankM. IfMi−1 already contains indices from any timestep
included in T̂ i, these are replaced by the new ones, i.e.,

Mi ← {ei−1
t | ei−1

t ∈Mi−1, t ̸∈ T̂ i} ∪ {eit | t ∈ T̂ i}. (4)

Additionally, we update the set of the timesteps in the mem-
ory bank, denoted by Oi, by letting Oi ← Oi−1 ∪ T̂ i, i.e.,
recording all the timesteps stored forMi. In other words, we
can use the timestep t ∈ Oi as the index to retrieve the KV

1The value of s is usually smaller than T because in diffusion models, the
final steps mainly add details [19], making it unnecessary to store KV pairs
from earlier steps.



pair in the memory bankMi byMi(t). By maintaining Oi,
we can retrieve the stored KV pairs for the reading phase to
guide future iterations.
Reading. During the (i + 1)-th edit, at each timestep t, we
retrieve the KV pair stored inMi to replace the current KV
pair in the U-Net if applicable:

(Ki+1
t , V i+1

t )←

{
Mi(t), if t ∈ Oi

(Ki+1
t , V i+1

t ), otherwise.
(5)

Additionally, to counteract the potential loss of editing
strength caused by KV pair replacements, we multiply the
guidance scale by a factor gi = T/(T − |Mi|). This ad-
justment is applied during steps where the KV pairs are not
replaced, ensuring editing performance across iterations.

4. EXPERIMENTS

4.1. IterEditBench Dataset

As no existing benchmarks focus on iterative face editing,
we introduce a self-constructed benchmark dataset named
IterEditBench, specifically designed for real-world itera-
tive face editing tasks. The dataset consists of 1000 samples
and each sample constructed by two components: (1) Base
Image: A high-resolution facial image randomly selected
from the FFHQ dataset [20], which provides diverse and
high-quality facial images suitable for editing tasks. (2) Edit-
ing Instructions: A sequence of five instructions randomly
sampled from a predefined prompt set. Here, we generate
the prompt set by OpenAI’s ChatGPT to include a variety of
tasks (see Appendix 1). In each sample, the editing process
begins with the base image. Instructions are applied se-
quentially, where each instruction modifies the output of the
previous step. This setup simulates a realistic iterative work-
flow, ensuring that the model is tested for both consistency
and adaptability across diverse editing scenarios.

4.2. Experimental Setup

Implementation Details. We adopt the official pre-trained
InstructPix2Pix model [1] as our backbone, keeping all hyper-
parameters at their default values. To further improve the lo-
cality of facial edits, we incorporate S-CFG [21] into the In-
structPix2Pix framework. For the proposed IterDiff, we em-
pirically set s = 40 and k = 20 to strike a balance between
memory efficiency and editing performance.2 All images are
resized to 512 × 512 pixels. We focus on attention maps of
sizes 32 × 32, 16 × 16, and 8 × 8, which are from deeper
layers of the model, to capture high-level semantic structures.
This ensures that edits remain semantically meaningful. Ad-
ditional experiments examining the redundancy of TF2P and
the impact of guidance factors are presented in Appendix 2.

2The sensitivity test of the hyperparameters can be found in Appendix 2

Baselines. For comparative analysis, we include state-of-
the-art training-free methods such as InstructPix2Pix [1],
InstructPix2Pix with S-CFG [21]3 and EMILIE [5]4 as base-
lines in our evaluations. S-CFG dynamically adjusts the guid-
ance scale by leveraging self-attention and cross-attention
maps to identify key regions for different tokens, improv-
ing editing precision. EMILIE, on the other hand, performs
iterative editing directly in the latent space without decod-
ing through the VAE, enabling more efficient and consistent
updates across editing steps.
Metrics. To evaluate the performance of IterDiff, we em-
ploy the following metrics to measure content consistency,
i.e., how well the edited images retain the content and iden-
tity of the input images, and overall image quality, i.e., the
realism and coherence of the edited images.

• CLIP-I [18] evaluates semantic similarity in the CLIP
embedding space , with higher values indicating better
consistency.

• LPIPS [22] assesses perceptual similarity, where lower
scores reflect better preservation of visual details.

• Image Reward [23] is a learned scoring model trained
to align with human preferences for text-to-image gen-
eration. Higher scores indicate better alignment with
textual prompts, greater visual realism, and improved
overall aesthetic quality.

For metrics requiring image pairs (CLIP-I, LPIPS), compar-
isons are made between Ii−1 and Ii. For metrics requiring
prompts (Image Reward), we use ”A human face” for I0 and
”A human face edited with prompt: ”{citext}”” for Ii.

4.3. Quantitative Evaluation

The evaluation results summarized in Fig. 3, highlight the rel-
ative strengths of the compared methods across various met-
rics. In terms of content consistency (CLIP-I in Fig. 3(a)
and LPIPS in Fig. 3(b)), IterDiff outperforms all other meth-
ods in terms of CLIP-I and achieves the lowest LPIPS score,
highlighting its ability to effectively preserve the content and
structure of input images during iterative edits. Notably, while
other methods such as ip2p and EMILIE show a clear degra-
dation in CLIP-I and LPIPS as the number of edits increases,
IterDiff maintains stable performance. Furthermore, IterDiff
clearly surpasses both InstructPix2Pix and its S-CFG variant
in preserving structural and semantic consistency across edits.
This stability can be attributed to the design of our memory
bank. As the distribution shifts with each iterative edit, the
memory bank retains earlier KV pairs that are less affected

3S-CFG is originally built on SD [3]; we have modified it to adapt to
InstructPix2Pix.

4Since the official implementation is not publicly available, we have im-
plemented the method based on the details provided in the paper.
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Fig. 3: Quantitative curves in the i-th editing of (a) CLIP-I, (b) LPIPS, and (c) Image Reward for InstructPix2Pix (ip2p),
InstructPix2Pix + S-CFG, EMILIE, and IterDiff.
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Fig. 4: Qualitative comparisons of ip2p and IterDiff

by these shifts. This mechanism mitigates the cumulative dis-
tribution drift by anchoring the editing process to these more
stable reference points. In terms of image quality, IterDiff
achieves the highest ImageReward score, indicating its supe-
rior perceptual quality relative to other methods.

4.4. Qualitative Evaluation

The qualitative evaluation (Fig. 1 and Fig. 4) of the two meth-
ods, IterDiff and InstructPix2Pix, reveals significant differ-
ences in their ability to perform iterative face editing tasks
based on textual instructions. IterDiff consistently demon-
strates a more refined and realistic approach to edits, pre-
serving the original identity and structure of the person while
seamlessly applying modifications. For example, as shown
in Fig. 4, when instructed to “Change the gender to female,”
IterDiff effectively transitions the facial features and overall
appearance to accurately reflect a female version of the per-
son, while preserving the original identity and ensuring the
transformation appears natural and proportional. In contrast,
InstructPix2Pix, despite capturing the intent of the instruc-
tion, not only changes the gender but also inadvertently makes

the individual appear significantly younger. This age alter-
ation often results in a less realistic outcome, as it introduces
disproportionate changes that stray from the subject’s original
features. Likewise, when given the instruction “Change the
hair color to black,” InstructPix2Pix darkens not only the hair
but also the color of the sunglasses, which is an unintended
modification. Meanwhile, IterDiff successfully modifies only
the hair color without affecting unrelated elements in the im-
age, demonstrating better localized editing control.

Acknowledgments
This work is partially supported by the National Science and
Technology Council, Taiwan under Grants NSTC-112-2221-
E-A49-059-MY3 and NSTC-112-2221-E-A49-094-MY3.

5. CONCLUSION

In this work, we propose IterDiff, a training-free framework
for iterative face editing using diffusion models. To preserve
identity across edits, we introduce Training-Free Feature
Preservation (TF2P), which avoids additional training or
fine-tuning. We also design an Efficient CLIP-guided Mem-
ory Bank (ECMB) to select the most relevant key-value (KV)
pairs, enabling semantic consistency and reducing memory
overhead. IterDiff achieves high-quality editing with mini-
mal artifacts across multiple iterations. Experimental results
on the IterEditBench dataset demonstrate that IterDiff out-
performs existing methods in both identity preservation and
image fidelity. With its lightweight design and robust gen-
eralization, IterDiff provides a solution for scalable, iterative
editing. Future work may explore extending this framework
to general object and scene editing, as well as dynamically
managing KV pairs to further enhance efficiency.
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